Please use this identifier to cite or link to this item: http://dspace2020.uniten.edu.my:8080/handle/123456789/9501
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAhmad, S.M.S.en_US
dc.contributor.authorShakil, A.en_US
dc.contributor.authorFaudzi, M.A.en_US
dc.contributor.authorAnwar, R.Md.en_US
dc.contributor.authorBalbed, M.A.M.en_US
dc.date.accessioned2018-03-01T03:52:48Z-
dc.date.available2018-03-01T03:52:48Z-
dc.date.issued2009-
dc.description.abstractThis paper presents an automatic off-line signature verification system that is built using several statistical techniques .The learning phase involves the use of Hidden Markov Modelling (HMM) technique to build a reference model for each local feature extracted from a set of signature samples of a particular user. The verification phase uses three layers of statistical techniques.. The first layer involves the computation of the HMM-based log-likelihood probability match score. The second layer performs the mapping of this score into soft boundary ranges of acceptance or rejection through the use of z-score analysis and normalization function. Next Bayesian inference technique is used to arrive at the final decision of accepting or rejecting a given signature sample. © 2008 IEEE.en_US
dc.language.isoen_USen_US
dc.relation.ispartofIn 2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009 (Vol. 6, pp. 6-11). [5170651]en_US
dc.titleA hybrid statistical modelling, normalization and inferencing techniques of an off-line signature verification systemen_US
dc.typeConference Proceedingen_US
dc.identifier.doi10.1109/CSIE.2009.973-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.openairetypeConference Proceeding-
Appears in Collections:CCI Scholarly Publication
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.