Please use this identifier to cite or link to this item:
http://dspace2020.uniten.edu.my:8080/handle/123456789/7186
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yuen, C.W. | en_US |
dc.contributor.author | Balasubramaniam, N. | en_US |
dc.contributor.author | Din, N.Md. | en_US |
dc.date.accessioned | 2018-01-11T09:11:06Z | - |
dc.date.available | 2018-01-11T09:11:06Z | - |
dc.date.issued | 2009 | - |
dc.description.abstract | This paper proposes to improve the performance of the K-Nearest Neighbour algorithm in predicting the location of a mobile user in an indoor environment. Emphasis is placed on RSS sample vector fluctuation stabilization, resulting in an overall 12% increase in the precision of predicting correct locations compared to previous efforts. ©2009 IEEE. | |
dc.language.iso | en | en_US |
dc.title | Improvement of indoor location sensing algorithm using Wireless Local Area Network (WLAN) IEEE 802.11b | en_US |
dc.type | Conference Paper | en_US |
dc.identifier.doi | 10.1109/MICC.2009.5431451 | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.openairetype | Conference Paper | - |
Appears in Collections: | COGS Scholarly Publication |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.