Please use this identifier to cite or link to this item: http://dspace2020.uniten.edu.my:8080/handle/123456789/7186
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYuen, C.W.en_US
dc.contributor.authorBalasubramaniam, N.en_US
dc.contributor.authorDin, N.Md.en_US
dc.date.accessioned2018-01-11T09:11:06Z-
dc.date.available2018-01-11T09:11:06Z-
dc.date.issued2009-
dc.description.abstractThis paper proposes to improve the performance of the K-Nearest Neighbour algorithm in predicting the location of a mobile user in an indoor environment. Emphasis is placed on RSS sample vector fluctuation stabilization, resulting in an overall 12% increase in the precision of predicting correct locations compared to previous efforts. ©2009 IEEE.
dc.language.isoenen_US
dc.titleImprovement of indoor location sensing algorithm using Wireless Local Area Network (WLAN) IEEE 802.11ben_US
dc.typeConference Paperen_US
dc.identifier.doi10.1109/MICC.2009.5431451-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.openairetypeConference Paper-
Appears in Collections:COGS Scholarly Publication
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.