Please use this identifier to cite or link to this item: http://dspace2020.uniten.edu.my:8080/handle/123456789/5036
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNagi, J.en_US
dc.contributor.authorYap, K.S.en_US
dc.contributor.authorTiong, S.K.en_US
dc.contributor.authorAhmed, S.K.en_US
dc.contributor.authorNagi, F.en_US
dc.date.accessioned2017-11-14T03:21:32Z-
dc.date.available2017-11-14T03:21:32Z-
dc.date.issued2008-
dc.description.abstractEfficient methods for DTMF signal detection are important for developing telecommunication equipment. This paper presents a hybrid signal processing and artificial intelligence based approach for the detection of Dual-tone Multifrequency (DTMF) tones under the influence of White Gaussian Noise (WGN) and frequency variation. Key innovations include the use of a Finite Impulse Response (FIR) bandpass filter for reduction of noise from DTMF input samples, and Support Vector Machines (SVM) for intelligent classification of the detected DTMF carrier frequencies. The proposed hybrid DTMF detector scheme is based on power spectrum analysis by means of the Discrete Fourier Transform (DFT). The Goertzel's Algorithm is used to estimate the seven fundamental DTMF carrier frequencies. The tone detection scheme employs decision logic to detect valid DTMF tones from low and high DTMF frequency groups. Comparison of this hybrid DTMF tone detection model with existing DTMF detection techniques proves the merits of this proposed scheme. © 2008 IEEE.en_US
dc.language.isoenen_US
dc.relation.ispartofProceedings - International Symposium on Information Technology 2008, ITSim Volume 3, 2008, Article number 4631887en_US
dc.titleIntelligent detection of DTMF tones using a hybrid signal processing technique with support vector machinesen_US
dc.typeConference Paperen_US
dc.identifier.doi10.1109/ITSIM.2008.4631887-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.openairetypeConference Paper-
Appears in Collections:COE Scholarly Publication
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.