Please use this identifier to cite or link to this item: http://dspace2020.uniten.edu.my:8080/handle/123456789/21497
Title: Prediction of future ozone concentration for next three days using linear regression and nonlinear regression models
Authors: Mubin Zahari N.
Ezzah Shamimi R.
Hafiz Zawawi M.
Zia Ul-Saufie A.
Mohamad D.
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
Issue Date: 2019
Abstract: The aim of this research is to predict the ozone concentration level for the next three days. Linear regression model and a nonlinear regression model are used to measure the air pollution data and the result was compared. The performance indicator used to evaluate the accuracy of the methods is Index of Agreement (IA), Prediction Accuracy (PA) and Coefficient of Determination (R2). While Normalized Absolute Error (NAE) and Root Mean Square Error (RMSE) are for error measured. The results show that the prediction for the next three days. The highest ozone concentration of the linear regression model is 0.085ppm at Petaling Jaya, Selangor. While the lowest concentration for the linear regression model is 0.015 ppm at Klang, Selangor. Besides, the highest ozone concentration for the nonlinear regression model is 0.1 ppm at Petaling Jaya, Selangor for the second-day prediction. Comparison between the linear regression model and a nonlinear regression model indicates that nonlinear regression model can as an alternative method to the linear regression model. © 2019 Published under licence by IOP Publishing Ltd.
URI: http://dspace2020.uniten.edu.my:8080/handle/123456789/21497
Appears in Collections:UNITEN Ebook and Article

Files in This Item:
File Description SizeFormat 
This document is not yet available.pdf
  Restricted Access
396.12 kBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.