Please use this identifier to cite or link to this item: http://dspace2020.uniten.edu.my:8080/handle/123456789/21385
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLim K.C.en_US
dc.contributor.author, Selamat A.en_US
dc.contributor.authorMohamed Zabil M.H., Selamat M.H., Alias R.A., Puteh F., Mohamed F., Krejcar O.en_US
dc.contributor.authorSelamat M.H.en_US
dc.contributor.authorAlias R.A.en_US
dc.contributor.authorPuteh F.en_US
dc.contributor.authorMohamed F.en_US
dc.contributor.authorKrejcar O.en_US
dc.date.accessioned2021-11-08T02:00:48Z-
dc.date.available2021-11-08T02:00:48Z-
dc.date.issued2019-
dc.identifier.urihttp://dspace2020.uniten.edu.my:8080/handle/123456789/21385-
dc.description.abstractThis paper presents and discusses an empirical work of using machine learning K-means clustering algorithm in analyzing and processing Mobile Augmented Reality (MAR) learning usability data. This paper first discusses the issues within usability and machine learning spectrum, then explain in detail a proposed methodology approaching the experiments conducted in this research. This contributes in providing empirical evidence on the feasibility of K-means algorithm through the discreet display of preliminary outcomes and performance results. This paper also proposes a new usability prioritization technique that can be quantified objectively through the calculation of negative differences between cluster centroids. Towards the end, this paper will discourse important research insights, impartial discussions and future works. © 2019 The authors and IOS Press. All rights reserved.en_US
dc.language.isoenen_US
dc.titleQuantifying usability prioritization using K-means clustering algorithm on hybrid metric features for MAR learningen_US
dc.typeconference paperen_US
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.grantfulltextreserved-
item.openairetypeconference paper-
Appears in Collections:UNITEN Ebook and Article
Files in This Item:
File Description SizeFormat 
This document is not yet available.pdf
  Restricted Access
396.12 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.