Please use this identifier to cite or link to this item:
http://dspace2020.uniten.edu.my:8080/handle/123456789/21099
Title: | Particle swarm optimization based fuzzy logic MPPT inverter controller for grid connected wind turbine | Authors: | Parvin K. Kit Y.K. Jern K.P. Hoque M.M. Hannan M.A. #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# |
Issue Date: | 2019 | Abstract: | The wind energy source as an alternative to conventional sources to generate power has been increasingly popular due to abundant in nature and pollution free. The wind energy sources are undepletable, however, they are not able to generate as much electricity due to their intermittent nature. Therefore, a wind energy conversion system (WECS) with accurate maximum power point tracking (MPPT) inverter controller is essential in order to improve the wind energy capturing capability. This paper aims to develop an optimal Fuzzy logic MPPT inverter controller for grid connected wind turbine so that the energy capturing efficiency of the system can be maximized. In this research work, the MPPT inverter controller is designed on the basis of hill climb search method, fuzzy logic control and heuristic particle swarm optimization (PSO) algorithm. The performance of WECS is demonstrated with the generated output voltage, current and power waveforms, DC link voltage waveform, and the generator speed. According to the results obtained for both normal Fuzzy logic MPPT control and optimized Fuzzy logic MPPT control WECS, the performance of PSO optimized Fuzzy logic MPPT inverter controller has better maximum power point performance and efficiency in tracking wind energy in terms of much smooth, less distortion and fewer fluctuation outcomes at the various step wind speed conditions. The proposed optimal Fuzzy logic MPPT inverter controller have a good potentiality for WECS in sustainable grid application. © 2019, International Journal of Renewable Energy Research. | URI: | http://dspace2020.uniten.edu.my:8080/handle/123456789/21099 |
Appears in Collections: | UNITEN Ebook and Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
This document is not yet available.pdf Restricted Access | 396.12 kB | Adobe PDF | View/Open Request a copy |
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.