Please use this identifier to cite or link to this item: http://dspace2020.uniten.edu.my:8080/handle/123456789/20956
Title: Effect of energy band misalignment and morphology in In2O3-CNTs on electron transport in dye-sensitized solar cell
Authors: Mahalingam S.
Abdullah H.
Manap A.
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
Issue Date: 2019
Abstract: This study provides important insights in performance degradation of In2O3-MWCNTs (0.4 and 0.5 wt.%)-based dye-sensitized solar cell (DSSC) using chemical-bath deposition technique. In2O3-MWCNTs (0.4 wt.%) exhibited the highest power conversion efficiency of 0.312% with low electron recombination rate, keff of 1256.72 s−1, and faster electron lifetime, τeff of 0.80 ms compared to In2O3-MWCNTs (0.5 wt.%). The energy band misalignment between the conduction band of In2O3 photoanode and FTO caused severe electron recombination in In2O3-MWCNTs (0.5 wt.%). Therefore, this study can be used as a benchmark of 0.4 wt.% as the optimum concentration of MWCNTs in In2O3 for DSSC. © 2020, © 2020 Taylor & Francis Group, LLC.
URI: http://dspace2020.uniten.edu.my:8080/handle/123456789/20956
Appears in Collections:UNITEN Ebook and Article

Files in This Item:
File Description SizeFormat 
This document is not yet available.pdf
  Restricted Access
396.12 kBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.