
Research Article

Behavior recognition for humanoid
robots using long short-term memory

Dickson Neoh Tze How1, Chu Kiong Loo2,
and Khairul Salleh Mohamed Sahari1

Abstract
Learning from demonstration plays an important role in enabling robot to acquire new behaviors from human teachers.
Within learning from demonstration, robots learn new tasks by recognizing a set of preprogrammed behaviors or skills as
building blocks for new, potentially more complex tasks. One important aspect in this approach is the recognition of the
set of behaviors that comprises the entire task. The ability to recognize a complex task as a sequence of simple behaviors
enables the robot to generalize better on more complex tasks. In this article, we propose that primitive behaviors can be
taught to a robot via learning from demonstration. In our experiment, we teach the robot new behaviors by demon-
strating the behaviors to the robot several times. Following that, a long short-term memory recurrent neural network is
trained to recognize the behaviors. In this study, we managed to teach at least six behaviors on a NAO humanoid robot
and trained a long short-term memory recurrent neural network to recognize the behaviors using the supervised learning
scheme. Our result shows that long short-term memory can recognize all the taught behaviors effectively, and it is able to
generalize to recognize similar types of behaviors that have not been demonstrated on the robot before. We also show
that the long short-term memory is advantageous compared to other neural network frameworks in recognizing the
behaviors in the presence of noise in the behaviors.

Keywords
Behavior recognition, LSTM, deep learning, neural network

Date received: 14 March 2016; accepted: 16 June 2016

Topic: Special Issue - Robotic Technology for Sustainable Humanity
Associate Editor: Hanafiah Yussof

Introduction

Learning from demonstration

Robots learning new tasks from human demonstration is

inspired by how humans learn new tasks by having experts

guiding them. Consider a toddler learning to write an alpha-

bet with the help of an adult guiding the toddler by holding

his or her hand. With enough repetition or practice, the

toddler is able to master the tasks of writing the alphabet.

At this point, the toddler is able to perform the alphabet

writing task independent of any guidance from the adult.

Eventually, the toddler may even write different variations

of the same alphabet learned and still know it is the same

alphabet. Once at this stage, it is said that toddler’s learning

is successful in the sense that the toddler does not

memorize exactly the alphabet that was taught but is able

to generalize the concept and reproduce the same type of

alphabet that the teacher has not taught.

In the field of learning from demonstration (LfD), the

same concept is applied to teach robots new tasks or

1Center for Advanced Mechatronics and Robotics (CAMaRo), College of

Engineering, Universiti Tenaga Nasional, Kajang, Malaysia
2Advanced Robotics Lab, Department of Artificial Intelligence, Faculty of

Computer Science and Information Technology, University of Malaya

Corresponding author:

Khairul Salleh Mohamed Sahari, Universiti Tenaga Nasional Putrajaya

Campus, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia.

Email: khairuls@uniten.edu.my

International Journal of Advanced
Robotic Systems

November-December 2016: 1–14
ª The Author(s) 2016

DOI: 10.1177/1729881416663369
arx.sagepub.com

Creative Commons CC-BY: This article is distributed under the terms of the Creative Commons Attribution 3.0 License

(http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

mailto:khairuls@uniten.edu.my
http://arx.sagepub.com
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage

behaviors. Many researches in LfD encountered problems in

generating behaviors from skills or data sampled during

demonstrations.1 One of the most crucial problem is gener-

alization of the behaviors taught during the demonstration.

A good generalization of a behavior can be seen as the ability

of the robot to repeat the demonstrated behavior in circum-

stances that are not completely similar during demonstration

time. A number of researches agreed that one common way

to overcome this is to transform the demonstration into a set

of preprogrammed higher-level actions called subtasks,

motion primitives, motor primitives or motor skills.2,3 This

transformation supports not only generalization purposes

but also as an intuitive way for humans to understand

demonstrated data. A labeled sequence of skills, for exam-

ple, following the wall to my right, passing through a door,
going straight over the floor avoiding any obstacle, is sig-

nificantly easier to interpret than the raw sensor and motor

data.1 Recognition of these individual behaviors in a com-

plex task gives humans the advantage of probing into

the interpretation of the robot in response to some raw

sensor data. In order to achieve this transformation of

raw sensor data into labels, it is a prerequisite to identify

or recognize the behavior themselves.

One practical example as a motivation for the recognition

of behaviors or skills is highlighted by Hafner et al.4 In this

work, the authors attempted to generate stable walking gaits

for humanoid robots by learning them from the walking gaits

of human subjects. Nine 3-axis accelerometers were

attached to the specific positions of the human body and the

humanoid robot to capture the raw data in a walking task of

both the human and the robot. The objective of the work is to

allow the humanoid robot to imitate the walking gaits by

learning from the demonstrations shown to them. This is

analogous to LfD in which a robot learns complex tasks from

multiple demonstrations. In agreement to statements by

other researchers, Hafner et al. reported that it is important

for a humanoid robot to first recognize its own behaviors in

order to imitate the behaviors of its human teachers. Recog-

nition of its own behavior allows the humanoid robot to

analyze the behaviors and draw a connection between exe-

cuted and recognized behaviors.4 The importance of beha-

vior recognition on a robot remains a central motivation in

our study throughout. This study will focus on methods that

can be used as a behavior recognition mechanism on a robot.

Neural networks in behavior recognition task

In our study, primitive behaviors are demonstrated on the

robot via LfD. In our case, the primitive behaviors consist

of encoder values from the joints of the NAO humanoid

robot.5 The encoder readings specify the absolute position

of all joints onboard the NAO robot at any time. Whenever

a movement is performed on the robot within a time frame,

these encoder values form a sequence of instantaneous val-

ues of encoder readings. Figure 1 shows a sample reading

from the encoders when a behavior is demonstrated on the

robot within a 100-time-step time frame.

Due to the complex nature of the primitive behavior

sequences, simple conditioning or thresholding of the

encoder values does not work well. Other techniques

such as template matching is tedious to implement as

we need to hand engineer the features that pertain to

specific behavior sequences. Additionally, hand-

engineered features only fit particular behaviors and

does not generalize well to new behaviors. Template

matching also has been shown to be outperformed by

other methods such as support vector machines (SVMs)

and neural networks on various tasks.

This motivates the use of neural networks algorithm as a

method of behavior recognition. Neural network algorithms

have been known to outperform many other methods when

there is an abundance of data available. It is also shown that

neural network is able to learn features from the data6 with

minimal human intervention. On top of that, recent break-

throughs in deep learning approach involve the use of deep

neural networks that have shown to outperform many other

algorithms7 on various tasks. At the point of this writing, deep

learning algorithm has obtained state-of-the-art results in

vision-related tasks,8 speech recognition,9 and many more.

Within the many deep learning techniques, the recurrent

neural network (RNN) is of particular interest to us. This is

because RNNs are known to handle sequential data very

well. Examples of sequential data include audio speeches,

textual conversations, stock market prices, and in our case

robot encoder readings that pertain to behaviors. Since this

study deals with sequential data from encoder readings, the

use of RNN is appropriate. However, we also compare the

performances of the RNNs to that of the regular feedforward

types such as the multilayer perceptron (MLP) and the time-

delay neural network (TDNN).

Long short-term memory

The long short-term memory (LSTM) is one of the many

variations of the RNN. The LSTM is pioneered by Hochrei-

ter and Schmidhuber.10 The concept of LSTM is similar to

Figure 1. Sample readings from 10 different encoder sensors.
Legend shows different joint positions on-board the NAO robot.

2 International Journal of Advanced Robotic Systems

that of an RNN except that instead of having sigmoidal

units in the hidden layer, a more complex unit known as

‘‘memory units’’ are introduced. The reason behind the

introduction of these memory units is because RNN suffers

from a condition known as the vanishing gradient point.

This condition causes the information from past events to

be lost and overwritten by more recent information. In the

study by Graves,11 it is reported that RNNs can only retain

information up to only 10 time steps in the past. This is a

serious drawback to the RNN because most sequential data

store information in sequence length that far exceeds 10

time steps. Therefore, in theory, RNNs cannot be used to

compute sequences that are longer than 10 time steps

because the information far past in the sequence is lost

during the computation.

The LSTM claims to remedy the problem of vanishing

gradient by having the memory unit retain the information

for an arbitrary amount of time.12 A typical LSTM memory

unit contains gates that determine when an information is

significant enough to remember, when it should retain the

value in the memory, when it should forget the retained

information, and when should it output the value to the next

computational unit.

Figure 2 shows a typical LSTM memory cell.

For most RNN, the hidden layer function, H, is an ele-

mentwise application of a sigmoid function (1=1þ e�x)

over the inputs

ht ¼ HðWxhxt þWhhht�1 þ bhÞ (1)

yt ¼ Whyht þ by (2)

where the W terms denote weight matrices (e.g. Wxh is the

input-hidden weight matrix), the b terms denote bias vec-

tors (e.g. bh is the hidden bias vector), and H is the hidden

layer function.

For the LSTM, however, H is implemented in a series of

equation involving all the gates as in Figure 2. The imple-

mentation of H is given by

it ¼ �ðWxixt þWhiht�1 þWcict�1 þ biÞ (3)

ft ¼ �ðWxf xt þWhf ht�1 þWcf ct�1 þ bf Þ (4)

ct ¼ ftct�1 þ it tanhðWxcxt þWhcht�1 þ bcÞ (5)

ht ¼ ot tanhðctÞ (6)

where � is the logistic sigmoid function; i, f , o, and c are

the input gate, forget gate, output gate, and cell activation

vectors, respectively; and W ’s are rectangular weight

matrices. The output vector sequence yt is calculated as

in equation (2). As shown, the only change is in the hidden

layer activation, H.

LSTMs have been widely used to solve many problems

related to sequential data and obtained state-of-the-art per-

formances. These includes handwriting recognition,13 lan-

guage modeling,14 language translation,15 acoustic

modeling of speech,16 speech synthesis,17 protein second-

ary structure prediction,18 analysis of audio,19 and video

data20 among others.

Related works

Under the literature of robot behavior recognition, several

approaches were documented. This includes variance

thresholding of certain sensor modalities,21,22 thresholding

the mean velocity of joints,23,24 and matching of pre- and

postconditions with current sensory states.25 SVM is also

being proposed for body posture recognition.26 Nearest

neighbor classifier is proposed in the study of Bentivegna27

to identify skills in a marble maze task. Learning Vector

Quantization28 in combination with nearest neighbor clas-

sifier is proposed in the study by Pook and Ballard2 to

classify sliding windows of data. In the study by Park

et al.,29 a hidden Markov model is proposed to recognize

the gestures of humans based on the hands and head posi-

tion using a camera. Even though many of the proposed

techniques work well in recognizing many specific beha-

viors, none provide a general solution to the problem.

Behavior recognition also appears to be ill-posed when

seen as a classification problem.30

In addition to the above, Billing and Hellström sug-

gested three additional techniques for the recognition of

behaviors in mobile robots.1 In his first technique known

as �-comparison, the algorithm compares the output of a

controller in response to the input with observed actions in

the demonstration. In his experiments, the authors recog-

nize behavior of the mobile robots by comparing the

learned behaviors to the behaviors produced by the con-

troller. In the �-comparison algorithm, the learned beha-

viors are considered to be similar to the one produced by

the controller if both produce similar actions given

Figure 2. A typical LSTM memory unit consists of input gate,
forget gate, output gate, and the cell state.12 LSTM: long short-
term memory.

How et al. 3

a similar input. The authors, however, reported poor per-

formance of this method because the �-comparison algo-

rithm only compares action vectors.1

In the second technique, Billing and Hellström proposed

the use of autoassociative neural networks (AANNs) for

comparison of behaviors. In this technique, a feedforward

neural network is implemented where the input and the

output of the network are the same to the input. However,

the hidden layer of the network is restricted to be small. The

network is then allowed to learn the input–output mappings

through a small hidden layer. The network is trained by a

least squared criterion. Next, the network is presented with

new independent behavior data. The similarity of the new

data to the training data is evaluated by the reconstruction

error value. If the reconstruction error is low, the new data

is considered to be similar to the training data. The author

reports a reasonable if not the best result in the study by

Billing and Hellström.1

In the third technique, the author proposed the S-com-

parison algorithm that is based on S-learning, inspired by

the human neuromotor system.31,32 S-learning differs from

the previous technique in which �-comparison and the

AANN network treat each sample separately as indepen-

dent events, whereas S-comparison is able to extract tem-

poral patterns and correlation in the behavior data. This

allows for the S-learning algorithm to recognize behaviors

based on recent observation of data values. Even though

S-learning uses the most information from the data, the

authors reported no improvement in performance. Several

issues are also reported to have affected the performance of

the S-comparison in the study by Billing and Hellström.1

Another different work by Chalodhorn et al.33 utilized

nonlinear principal components analysis (NLPCA) as a

mechanism for recognizing behaviors of a humanoid robot

involving 25 degrees of freedom (all joints on the robot

except two neck joints, two hand joints, and one torso

joint). In this work, the authors constructed an NLPCA

autoencoder neural network to reduce the number of fea-

tures in a ball tracking motion of a humanoid robot to only

three principal components. The authors approached the

problem of behavior recognition using the unsupervised

learning method of NLPCA. From the results, the authors

manage to successfully recognize five of six types of

behaviors without any prior knowledge of the behaviors.

The NLPCA algorithm works by clustering similar

motions together and thus enables the recognition of the

behavior types. However, the authors also noted that the

algorithm was not able to distinguish behavior patterns

that differ in frequency, for example, fast walking gait

and slow walking gait. Figure 3 shows the recognized

behaviors in the feature space.

In a more recent paper by Noda et al.,34 the authors

utilized deep learning techniques for behavior recognition

on a humanoid robot. The approach is somewhat similar to

the AANN technique by Billing and Hellström with addi-

tional modifications. First, the neural network model

consists of 11-layer deep autoencoder neural network com-

pared to the AANN technique with only single hidden

layer. The deep autoencoder network by Noda et al. is also

modified to handle time-series data by including sliding

windows in the input vectors. The novel method combines

the TDNN in a 11-layer deep autoencoder configuration

allowing the network to process temporal information.

Noda et al. used the unsupervised learning method as an

approach to classify the behaviors. By utilizing higher level

features that can be extracted in the deeper layers of the

deep autoencoder, the complexity of classification of the

behaviors is reduced dramatically. The authors claimed that

the higher level features self-organize in the feature space

and form clusters according to the types of behaviors. From

this point on, any simple classification algorithm is able to

classify the high-level features accurately. In the imple-

mentation of TDNN, the algorithm manages to classify as

Figure 3. Recognized motion patterns projected in the first three
principal components of the raw data.33 Legend indicates the type
of behaviors modeled in the feature space.

Figure 4. Multimodal feature space acquired by Noda et al.34,35

Legend indicates the number of behaviors modeled in the feature
space. The feature space shows the behaviors in its three principal
components labeled PC1, PC2, and PC3.

4 International Journal of Advanced Robotic Systems

many as six object manipulation behaviors. The results

from the experiment show the features of the multimodal

data self-organize in the feature space. In this study, the

authors showed that the recognition of complex sequence

of behavior data can be dramatically reduced using high-

erlevel features instead of raw data. Figure 4 shows the

described high-level feature space documented by Noda

et al.

The use of the deep neural network in the TDNN by

Noda et al. approach has seen great successes in recogniz-

ing a number of tasks.34 However, the use of TDNN

requires the hyperparameters of the network to be fixed

and determined beforehand. One crucial example that is

also highlighted in the study is the predetermination of the

sliding time window, T . The sliding time window in the

implementation of TDNN determines how much contex-

tual information should the network consider for computa-

tion. In the study, the authors predetermined the value of

the sliding time window, T , to be T ¼ 30 time steps. The

main reason of choosing the value is because the authors

noted that 30 time steps are enough to characterize one

phase of all the behaviors.34 Therefore, T ¼ 30 is an opti-

mized value for all the six behaviors tested in the article. On

another note, the authors stated that it is crucial to select an

optimized sliding window value, T . If the sliding time win-

dow, T , is too small, the network may not learn anything.

On the other hand, if the time window is too large, the

network may consider more contextual information, and

this increases computation time and cost.34 In many cases,

the value of the sliding time window, T , is extremely task

dependent. There is no value of T that will fit for general

use. Therefore, the predetemination of the sliding window

value in TDNN would require prior knowledge of the tasks.

This would be impractical in some situations where we

have no prior knowledge of the task at hand.

In order to eliminate the need to predetermine the sliding

time window, T , we embark on a different approach of

using RNNs for the task of behavior recognition. The use

of recurrent variant of neural networks eliminates the need

to determining the value of T . We saw that the value of T

dictates how much information does the network retain

from past events in order to make a decision on the current

event. However, in recurrent networks, how much memory

the network retains from past events are learned directly

from the data itself. There is no need for human observers

to study the data sequences and set the value of T to fit and

function well on the sequences. This way, we see the poten-

tial of RNNs to be used as a behavior recognition

mechanism.

Recurrent networks, especially the LSTM variant, are

known to solve many sequence recognition problems in

various domains. However, to date, there are no prominent

frameworks on using RNN especially LSTM for behavior

recognition on robots. Therefore, we are determined to

push through our framework of using recurrent networks

as a competitive approach to conventional feedforward

architecture in the scope of behavior recognition. There-

fore, in this study, we particularly explored the perfor-

mance comparison among recurrent and feedforward

neural architecture. We elaborate on the various architec-

tures of neural networks and how it fits into the application

of behavior learning in the upcoming sections.

Methodology

Based on the motivation, we carry out our work by utilizing

neural networks toward the goal of recognizing primitive

behaviors on the NAO humanoid robot. It is shown previ-

ously in Figure 1 that each behavior demonstration can be

observed as a time series or a sequence. Based on this fact,

we approach the problem of behavior recognition as a form

of sequence labeling task using the supervised learning

scheme. In using supervised learning, each behavior

sequence in the data set is given a label. These sequence–

label pair is then used as training examples for the neural

networks.

Data collection

There are no readily available, prominent data set for the

task of behavior recognition using the NAO robot to date.

Therefore, we decided to sample a data set of primitive

behaviors. The behaviors are adapted from the study by

Noda et al.34 Sampling is done by demonstrating the beha-

vior on the NAO robot while recording the encoder values

from each joint. For simplicity, we only sample from enco-

ders that are located on both arms of the NAO robot. Enco-

der values from other joints of the NAO robot are not

considered. In total, we sampled encoder readings from

10 distinct joints from both the arms of the NAO robot.

Table 1 tabulates the name of the joints, its abbreviation,

and its respective mathematical notation. Figures 5 to 10

illustrate the six types of primitive behaviors that we

demonstrate on the NAO robot. The description of the

behaviors is as follows. The ball lift is described as NAO

Table 1. Ten specific joints on the NAO robot that are used
throughout the study.

Number Joint name Abbreviation
Mathematical

notation

1 Right shoulder
pitch

RSP x1

2 Right shoulder roll RSR x2

3 Right elbow roll RER x3

4 Right elbow yaw REY x4

5 Right wrist yaw RWY x5

6 Left shoulder
pitch

LSP x6

7 Left shoulder roll LSR x7

8 Left elbow roll LER x8

9 Left elbow yaw LEY x9

10 Left wrist yaw LWY x10

How et al. 5

Figure 5. Ball lift.

Figure 6. Ball roll.

Figure 7. Bell ring left.

Figure 8. Bell ring right.

6 International Journal of Advanced Robotic Systems

robot holding a yellow ball on a table and raising the ball to

shoulder height. The ball roll behavior is described as itera-

tively rolling a yellow ball on top of a table to the right and

left using alternative arm movement. The bell ring left/right

behavior is described as hitting a yellow bell on the left/

right of the robot using its left/right arm, respectively. The

ball roll on a plate is described as rolling a yellow ball on a

plate by swinging the left and right arms. The behavior

ropeway is described as swinging a white toy from string

attached to both hands by moving both arms up and down.

For each of the six behaviors, we sampled 100 time steps

of encoder values. These 100 time steps of values constitute

one sequence. We repeated the sampling for 100 times, thus

obtaining 100 sample sequences for one class of behavior.

The same is repeated for all six behaviors. The encoder data

were sampled at a sampling rate of fs ¼ 20 Hz.

At the end of the sampling, the samples for each beha-

vior class can be represented as a single large matrix con-

taining all the sample sequences. Formally, sampled

behavior matrix B for one behavior class can be stated as

a matrix containing column vectors of encoder values xðtÞ
across time step, T . In our case, time step, T , is 100 for each

sample sequence. The column vector, xðtÞ, can be

expressed as

xðtÞ ¼

x1ðtÞ
x2ðtÞ
x3ðtÞ
x4ðtÞ
x5ðtÞ
x6ðtÞ
x7ðtÞ
x8ðtÞ
x9ðtÞ
x10ðtÞ

2
6666666666666666664

3
7777777777777777775

(7)

In other words, xðtÞ is a vector of the instantaneous

encoder values from 10 specific joints at time, t. Thus, the

behavior matrix, B can be expressed as

B ¼

x1ð1Þ x1ð2Þ :: :: x1ðTÞ
x2ð1Þ x2ð2Þ :: :: x2ðTÞ
x3ð1Þ x3ð2Þ :: :: x3ðTÞ
x4ð1Þ x4ð2Þ :: :: x4ðTÞ
x5ð1Þ x5ð2Þ :: :: x5ðTÞ
x6ð1Þ x6ð2Þ :: :: x6ðTÞ
x7ð1Þ x7ð2Þ :: :: x7ðTÞ
x8ð1Þ x8ð2Þ :: :: x8ðTÞ
x9ð1Þ x9ð2Þ :: :: x9ðTÞ
x10ð1Þ x10ð2Þ :: :: x10ðTÞ

2
6666666666666666664

3
7777777777777777775

(8)

We formed our data set of six behaviors based on the

sampled data. Each sequence in each behavior is given an

Figure 9. Ball roll on plate.

Figure 10. Ropeway.

How et al. 7

appropriate label for classification purposes. The data set

are made available at the following site:

https://github.com/dnth/behavior-dataset

Network architectures

We evaluated several neural network architectures in this

study in order to find an architecture that can perform best

on the behavior classification task. The architecture of the

evaluated networks are as follows:

1. LSTM with one hidden layer containing 20 LSTM

memory cells. Recurrent connections are only

allowed in the hidden layer.

2. Simple recurrent neural network (SRNN) with one

hidden layer containing 44 neurons. Neurons in the

hidden layers utilize the logistic sigmoid activation

function. Recurrent connections are only allowed in

the hidden layer.

3. TDNN with one hidden layer containing 25 neu-

rons. The sliding time window, T , parameter is set

to T ¼ 10 time steps. Hidden neurons utilize the

logistic sigmoid activation function. Our implemen-

tation of TDNN in this study is similar to the one of

Noda et al.34 with the usage of sliding time win-

dows, T . More details of the TDNN can be found in

the study by Kaiser36 and Waibel et al.37

4. MLP with one hidden layer containing 153 hidden

neurons. Hidden neurons utilize the logistic sigmoid

activation function. The implementation of MLP is

similar to the study by Ciresan et al38 albeit we limit

our number of hidden layers to only one due to

limited computational resources.

The number of neurons in the hidden layer was cho-

sen such that all network models have approximately the

same number of parameters in order to justify a fair

comparison among different models. Table 2 shows the

number of tunable parameters in each of the neural net-

work model.

During the training phase, we implement the early

stopping training technique and L2 (weight decay) regu-

larization as a precaution against overfitting. The early

stopping training technique is implemented as shown in

algorithm 3.

The loss function, L, is stated as

L ¼ 1

n

Xn

i¼1

jjðŷi � yiÞjj2

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
MSE term

þ �

2

X
i

w2
i

weight decay term|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
(9)

In equation (9), L is the loss function, n is the number of

training samples, y is the targeted output, and ŷ is the actual

output by the model trained. The first term is known as the

mean squared error term. The second term is also known as

the weight decay term. The weight decay term is used to

penalize large weights as a form of regularization to pre-

vent overfitting of the models.39,40 The training for all net-

work is done by minimizing the formulated loss function L.

For the output neurons of all network models, we apply

the Softmax function to estimate the probability of a

sequence belonging to one of the six classes of behaviors.

The Softmax function is given by

ŷk ¼
eakXK

k
0 ¼1

ea
k
0

(10)

where K is the total number of outputs and ak is the

weighted sum on the k-th node. The denominator is the

normalization consisting of sum of exponentials over all

output nodes ensuring that the output sums to 1. The Soft-

max function squashes the values of the hidden layer output

in the range (0,1). Due to this property, the Softmax func-

tion is often used to estimate the probability of an event or

action in a multiclass classification problem.41

Algorithm 1. Early stopping training algorithm.

0: count 0

1: while count < 100 do

2: Train network

3: if no improvement on validation set error then

4: count count þ 1

5: end if

6: if improvement on validation set error then

7: count 0

8: end if

9: end while

Experiment and discussions

In this section, we present our experiment setup and results.

The experiment setup is divided into two parts. The first

part of the experiment explores the performance of the

network models on the data set. In this experiment, we

evaluate the recognition rate of the network models on the

training, validation, and test set. In the second part of the

experiment, we evaluate the same network models on a

noise-robustness test. In this part of the experiment, we

explore and investigate the networks in search for the

model that is least influenced by noisy input data. The

Table 2. Total number of tunable parameters (weights and
biases) of each network architecture.

Network Total parameters

LSTM 2600
SRNN 2684
TDNN 2681
MLP 2607

LSTM: long short-term memory; SRNN: simple recurrent neural network;
TDNN: time-delay neural network; MLP: multilayer perceptron.

8 International Journal of Advanced Robotic Systems

https://github.com/dnth/behavior-dataset

detailed procedures of the experiment setups will be elabo-

rated in each respective subsection.

Performance on data set

In this experiment, we evaluate the classification accuracy

performance of all network models on the data set. The

evaluation is done on three separate portions of the data

set, that is, the training set, validation set, and the test set.

Evaluation is done by forward passing all sequences

belonging to the data set and calculating its classification

accuracy with respect to the true labels. Table 3 tabulates

the classification accuracy of each model.

In this experiment, all network models were ensured to

have approximately the same number of parameters. Based

on the classification results in Table 3, we observe that all

models show almost on par performance on the classifica-

tion accuracy. We observe that the MLP, TDNN, and the

LSTM performed equally well on the training and valida-

tion sets. However, the performance on the test set differs

for all models. The test set is not used during the training

process. Hence, the sequences in the test set are new to all

the models. By testing the models on new data, we can

gauge how well the models are able to generalize on data

they have not encountered before during training. We

therefore take the performance of the models on the test

set as the generalization performance of the network mod-

els. Based on the test set results, LSTM outperforms all

other models that lead to a conclusion that the LSTM net-

work is able to generalize better from the training and

validation sets and performs best on the new data it has not

encountered in the test set. As an additional advantage,

compared to all models used in the experiment, the LSTM

possesses the least number of weight parameters.

In this experiment, the result of the MLP network is

taken as the baseline performance for all models. This is

due to the fact that the MLP network does not take into

consideration contextual information in a sequence, that is,

the network treats every single point in the data set as

independent and identically distributed (i.i.d.). Therefore,

in theory, the performance of the MLP should be worse

compared to other models that consider contextual infor-

mation such as SRNN, TDNN, and LSTM. We observe in

the classification results that, even without considering the

contextual information, the MLP is able to score an impres-

sive 99.71% on the test set. The impressive performance of

the MLP suggests that even with discarded contextual

information, the model is still able to differentiate different

sequences by only looking at single data frame at a time.

The impressive performance of the MLP may also be a

result of relatively simple data set of behaviors that consists

only of sequence that spans less than 100 time steps across.

Also, the sequences that were used in this study involved

repetitive movements, which may simplify the problem.

On the other hand, TDNN does not treat each point as

i.i.d., rather, it considers an amount of contextual informa-

tion based on a predefined time window value, T.42 In our

implementation of the TDNN, we let the time window

variable, T ¼ 10. In the case of T ¼ 10, the TDNN network

will consider input data of the past 10 time steps in order to

classify the behaviors. Data that lies outside the value of T

will not be taken into consideration for classification. We

observe that by taking into account the values of the past 10

time steps, the TDNN offers an improvement to the MLP

score by scoring 99.92% on the test set. The performance of

TDNN with T ¼ 10 suggests that by taking into account

temporal information from the past 10 time steps, the

model is able to attain better results.

The SRNN differs from the MLP and the TDNN model

in which the former is an RNN while the latter are both

feedforward networks. In our implementation of RNN, we

allow the network to only have recurrent connections in the

hidden layer. Recurrent connections or recurrency in the

RNN model allows the RNN to consider an amount of

temporal information from previous time steps. However,

there is no specific variable determining how many time

steps to consider like in the case of TDNN, but rather the

length of information to consider is automatically learned

from the data during training. The concept of not having to

specify specific knowledge pertaining to the behavior of

the data is an added advantage for a general framework

of behavior recognition because the number of time steps

of contextual information may vary from one behavior to

another. The network should be able to learn them from the

data set. Predetermining the time window of contextual

information as in the case of TDNN would impose limita-

tions on the network to only suit certain behaviors well and

would not suit behaviors that are longer than the time win-

dow. Our implementation of RNN is also known as the

simple RNN or the Elman network in which the recurrent

connection only occurs in the hidden layer. The RNN

scored 99.88% of correct classification in the test set, a

slight decrease in performance compared to the TDNN.

We deduce that the slight decrease in performance can be

caused by a known problem in RNN, the vanishing gradient

problem.43 The vanishing gradient is a known problem in

RNN in which it does not allow the RNN to remember

inputs from the far past. In a report by Graves,11 the author

documented that the RNN is limited to remembering

Table 3. Classification accuracy performance of all network
models on the training, validation and test set together with the
number of weight parameters and training epochs.

Network
Total

parameters
Training
epochs

Training
set (%)

Validation
set (%)

Test
set (%)

MLP 2607 632 100.00 100.00 99.71
TDNN 2681 364 100.00 100.00 99.92
SRNN 2684 426 99.99 99.71 99.88
LSTM 2600 168 100.00 100.00 100.00

MLP: multilayer perceptron; TDNN: time-delay neural network; SRNN:
simple recurrent neural network; LSTM: long short-term memory.

How et al. 9

approximately 10 time steps of past inputs. Information

further away in the past is overwritten by more recent ones.

This is a great disadvantage in behavior recognition task as

it will not enable the RNN to learn longer behaviors with

long-term dependencies.

However, the LSTM network is designed to remedy the

problem of vanishing gradient in RNN. LSTM as proposed

by Hochreiter and Schmidhuber10 replaces the normal sig-

moid units in RNN with memory units. These memory

units enable the LSTM networks to learn long-term depen-

dencies that exist in the case of longer sequences. In our

implementation of the LSTM network, it scored 100.00%
on the test set of short and primitive behavior classification.

LSTM also proved to be easier to train44 compared to the

RNN in which LSTM networks converged faster compared

to all other models with approximately the same number of

weights. The advantages of the LSTM model compared to

all other models used in this experiment lead us to believe

that the LSTM model is superior in classification accuracy

performance when compared to MLP, TDNN, and RNN

models.

In this section, we conclude that we can approach the

task of primitive behavior recognition of simple, repetitive

sequences with reasonable accuracy without using models

that have advantage of capturing temporal dependencies

such as RNN, TDNN, and LSTM. However, in terms of

classification accuracy and generalization, LSTM is still

superior to other models by a small margin.

We had also implemented algorithm that obtained the

best classification on the data set (LSTM model) to classify

behaviors of the NAO humanoid robot in real time. In the

test, we sequentially demonstrate a sequence of behaviors

on the robot in the following order: ball lift > ball roll >

bell ring left > bell ring right > ball roll on plate > rope-

way and have the LSTM network classify these sequences.

Illustrated in Figure 11 is the result of the classification

with respect to time.

Noise robustness

In this experiment, we evaluated the noise robustness of all

the trained neural network models by subjecting the input

sequences to random Gaussian noise and measuring the

performance of the models by monitoring the recognition

rate. The equation of the Gaussian is given by

pGðzÞ ¼
1

�
ffiffiffiffiffiffi
2�
p e

�ðz��Þ
2

2�2 (11)

where p corresponds to the probability density function of a

Gaussian random variable z, � is the mean, and � is the

standard deviation.

All the sequences used in this experiment belong to the

test set that is not used during training. The test set con-

sisted of 120 sequences, each spans across 100 time steps.

Before imposing noise on the test set sequences, we per-

formed an initial test on the sequences with no noise. The

test was carried out in 30 repeated trials. During each trial,

the sequences were randomly picked. Next, we superim-

posed Gaussian noise with � ¼ 0 and � ¼ 0:1 onto the test

set sequences and plotted the recognition rate in 30

repeated trials. The experiment was repeated with

� ¼ 0:2; 0:3; 0:4 up to � ¼ 2:0. Figure 12 shows the per-

formance of each network model when the sequences were

corrupted by Gaussian noise.

We observe that without any presence of noise, all four

network models appear to have on-par performance of

Figure 11. Real-time behavior classification on the NAO robot using the LSTM. LSTM: long short-term memory.

10 International Journal of Advanced Robotic Systems

perfect score. Conversely, the performance of each model

starts to degrade at different rates once Gaussian noise was

superimposed on the test sequences.

Referring to Figure 12, we observe that from � ¼ 0:1 to

� ¼ 0:3, LSTM and TDNN seem to be comparable at noise

robustness performance. At � ¼ 0:1, the LSTM outper-

forms all models by scoring 97.77% accuracy compared

to 96.11% accuracy of TDNN, 73.33% of MLP, and

50.55% of RNN.

As a baseline result, we included a random classifier that

randomly picks (or guesses) the class of the sequences

corrupted with noise. The average of the baseline score

of the random classifier is at 16.40% average accuracy with

14.91% average standard deviation. Therefore, perfor-

mance accuracy that goes lower than this saturation point

is considered insignificant and can be said only-as-good-

as-a-random-guess performance. With the presence of the

saturation point, we are able to gauge the performance of

the noise robustness test better by knowing the threshold of

minimal performance.

We observe in Figure 12 that the model that is least

influenced by noise is the TDNN model. The saturation

point of the TDNN model is at � ¼ 1:3 with accuracy score

17.77% and 16.06% standard deviation. The RNN can be

said as the model that is most sensitive to Gaussian noise by

having classification accuracy score descend to about

16.66% with 15.51% standard deviation at Gaussian noise

� ¼ 0:4. The MLP follows hereafter with 19.44% accuracy

with 15.56% standard deviation at Gaussian noise � ¼ 0:6.

Next, we observe that the LSTM model reaches saturation

point at Gaussian noise � ¼ 0:8 by scoring 19.44% with

standard deviation 15.56%. Table 4 tabulates the saturation

point of each model and the accuracy and standard devia-

tion at the saturation point. We conclude from this result

Figure 12. Performance comparison of all network models when the input is subjected to Gaussian noise. The standard deviation
error bar is omitted for clarity.

How et al. 11

showing that the TDNN is the most noise robust model

followed by LSTM, MLP, and RNN models.

On a side note, all the network models in this experiment

are trained with the original data without any preprocessing

and addition of noise in the training process. The noise

robustness accuracy score can be further improved by

injecting noise into the training data, a well-known tech-

nique to achieve better performance in neural networks.45

Conclusion and future improvements

With regards to our findings, we conclude that the problem

of primitive sequence behavior recognition task can be

approached using models that do not capture long-term

dependencies. The use of LSTM as a model that is capable

to capture long-term dependencies does not make much

difference compared to other models. The true potential

of the LSTM network is also not being exploited. LSTM

network can in theory remember inputs from any arbitrary

time steps from the past. In the upcoming works, we will

exploit this trait of the LSTM networks by constructing a

data set that incorporates long-term dependencies and mon-

itoring the performances of the same network models.

In relation to the most recent work34 by Noda et al., the

contribution of this study is to introduce the use of recurrent

variant of deep neural networks (LSTM) that solves the

need of manually tuning the sliding time window, T , hyper-

parameter. The value of T that dictates how for in the past

should the network remember to make a decision on the

current event is learned automatically from the data

sequence itself. We showed that in a simple supervised

learning scheme, the LSTM is able to perform well in

recognizing basic sequences. Even though the performance

of the recognition is almost on par with other feedforward

nets, we believe it is largely due to the nature of the

sequences that are repetitive and does not require any

long-term memory to distinguish them. Even though the

true potential of the LSTM is not leveraged in this sense,

we found that the LSTM is more noise robust compared to

other networks tested. Noise robustness is a very desirable

feature in the use of behavior recognition because behavior

sequences may vary easily.

There are limitations of the work that need to be

addressed as part of our study in this writing. First, the joint

values utilized in the experiments are only limited to 10

specific joints on both the arms of the NAO robot. There

are remaining 15 joints on the NAO robot that are not

utilized. Including all the joints on the NAO robot is the

ultimate goal for this experiment and is proposed as upcom-

ing future improvements. Second, we limited the sampling

of the behavior to 20 Hz for the behavior used in this study.

From the documentation of the NAO robot, the robot is

capable of a much higher sampling rate of 100 Hz. Third,

we did not investigate into the execution time of the beha-

vior sequence. We sampled all behaviors in consistent exe-

cution time in our study. The effects of drastically different

execution time on the results are not known. Finally, even

though all network models seem to obtain good classifica-

tion result on the data set used in this study, the models are

not tested against other public data sets to verify the robust-

ness of the proposed framework.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) received no financial support for the research,

authorship, and/or publication of this article.

References

1. Billing EA and Hellström T. Behavior recognition for seg-

mentation of demonstrated tasks. In: IEEE SMC international

conference on Distributed Human-Machine Systems 2008,

2008, pp. 228–234. Athens.

2. Pook PK and Ballard DH. Recognizing teleoperated manipula-

tions. In: Proceedings of the IEEE international conference on

robotics and automation, 1993, pp 578–585. IEEE, 1993.

3. Urbanek H, Albu-Schäffer A, and van der Smagt P. Learning

from demonstration: repetitive movements for autonomous

service robotics. In: Proceedings of the IEEE/RSJ interna-

tional conference on intelligent robots and systems, 2004

(IROS 2004), Vol. 4, pp. 3495–3500. IEEE.

4. Hafner VV and Bachmann F. Human-humanoid walking gait

recognition. In: 8th IEEE-RAS international conference on

humanoid robots, 2008. Humanoids 2008, pp. 598–602.

IEEE, 2008.

5. Nao companion robot, aldebaran robotics. Available at:

https://www.aldebaran.com/en/humanoid-robot/nao-robot,

2016 (accessed 26 January 2016).

6. Huang GB, Lee H, and Learned-Miller E. Learning hierarch-

ical representations for face verification with convolutional

deep belief networks. In: IEEE conference on computer vision

and pattern recognition (CVPR), pp. 2518–2525. IEEE, 2012.

7. Krizhevsky A, Sutskever I, and Hinton GE. Imagenet classi-

fication with deep convolutional neural networks. In:

Advances in neural information processing systems, 2012,

pp. 1097–1105. Nips Foundation.

8. He K, Zhang X, Ren S, et al. Deep residual learning for image

recognition. arXiv preprint arXiv:1512.03385, 2015.

Table 4. Saturation point of network models and the accuracy
and standard deviation at saturation point.

Model Saturation point Accuracy (%) Standard deviation (%)

MLP � ¼ 0:6 19.44 15.56
TDNN � ¼ 1:3 17.77 16.06
RNN � ¼ 0:4 16.66 15.51
LSTM � ¼ 0:8 19.44 15.56

MLP: multilayer perceptron; TDNN: time-delay neural network; SRNN:
simple recurrent neural network; LSTM: long short-term memory.

12 International Journal of Advanced Robotic Systems

https://www.aldebaran.com/en/humanoid-robot/nao-robot, 2016
https://www.aldebaran.com/en/humanoid-robot/nao-robot, 2016

9. Amodei D, Anubhai R, Battenberg E, et al. Deep speech 2:

end-to-end speech recognition in English and Mandarin.

arXiv preprint arXiv:1512.02595, 2015.

10. Hochreiter S and Schmidhuber J. Long short-term memory.

Neural Comput 1997; 9(8): 1735–1780.

11. Graves A. Neural networks. In: Graves A (ed.) Supervised

Sequence Labelling with Recurrent Neural Networks. Berlin

Heidelberg: Springer, 2012, pp. 15–35.

12. Greff K, Srivastava RK, Koutnı́k J, et al. LSTM: a search

space odyssey. arXiv preprint arXiv:1503.04069, 2015.

13. Doetsch P, Kozielski M, and Ney H. Fast and robust training

of recurrent neural networks for offline handwriting recogni-

tion. In: 14th International conference on frontiers in hand-

writing recognition (ICFHR), 2014, pp. 279–284. IEEE.

14. Zaremba W, Sutskever I, and Vinyals O. Recurrent neural net-

work regularization. arXiv preprint arXiv:1409.2329, 2014.

15. Luong MT, Sutskever I, Le QV, et al. Addressing the rare

word problem in neural machine translation. arXiv preprint

arXiv:1410.8206, 2014.

16. Sak H, Senior A, and Beaufays F. Long short-term memory

based recurrent neural network architectures for large voca-

bulary speech recognition. arXiv preprint arXiv:1402.1128,

2014.

17. Fan Y, Qian Y, Xie FL, et al. TTS synthesis with bidirectional

LSTM based recurrent neural networks. In: Interspeech, pp.

1964–1968, 2014.

18. Sønderby SK and Winther O. Protein secondary structure

prediction with long short term memory networks. arXiv pre-

print arXiv:1412.7828, 2014.

19. Marchi E, Ferroni G, Eyben F, et al. Multi-resolution linear

prediction based features for audio onset detection with bidir-

ectional LSTM neural networks. In: IEEE international con-

ference on acoustics, speech and signal processing (ICASSP),

2014, pp. 2164–2168. IEEE.

20. Donahue J, Hendricks LA, Guadarrama S, et al. Long-term recur-

rent convolutional networks for visual recognition and descrip-

tion. In: Proceedings of the IEEE conference on computer vision

and pattern recognition, 2015, pp. 2625–2634. IEEE.

21. Peters RA, Campbell CL, Bluethmann WJ, et al. Robonaut

task learning through teleoperation. In: Proceedings of the

IEEE international conference on robotics and automation

(ICRA’03), Vol. 2, 2003, pp. 2806–2811. IEEE.

22. Koenig N and Mataric MJ. Behavior-based segmentation of

demonstrated tasks. In: Proceedings of the international con-

ference on development and learning, SAGE, 2006.

23. Fod A, Matarić MJ and Jenkins OC. Automated derivation of

primitives for movement classification. Autonom Robots

2002; 12(l): 39–54.

24. Nakaoka S, Nakazawa A, Yokoi K, et al. Recognition and

generation of leg primitive motions for dance imitation by a

humanoid robot. In: Proceedings of 2nd international sympo-

sium on adaptive motion of animals and machines, Kyoto,

Japan, 4–8 March 2003.

25. Nicolescu MN. A framework for learning from demonstra-

tion, generalization and practice in human-robot domains.

PhD Thesis, University of Southern California, USA, 2003.

26. Ardizzone E, Chella A, and Pirrone R. Pose classification

using support vector machines. In: Proceedings of the IEEE-

INNS-ENNS international joint conference on neural net-

works, 2000 (IJCNN 2000), Vol. 6, 2000, pp. 317–322. IEEE.

27. Bentivegna DC. Learning from observation using primitives.

PhD Thesis, Citeseer: Georgia Institute of Technology, 2004.

28. Kohonen T. Learning vector quantization. Berlin, Heidel-

berg: Springer, 1997.

29. Park HS, Kim EY, Jang SS, et al. HMM-based gesture recogni-

tion for robot control. In: Marques JS, de la Blanca NP and Pina P

(eds) Pattern recognition and image analysis. Berlin, Heidel-

berg: Springer, 2005, pp. 607–614.

30. Billing EA and Hellström T. A formalism for learning from

demonstration. Paladyn J Behav Robot 2010; 1(1): 1–13.

31. Rohrer B and Hulet S. A brain emulating cognition and con-

trol architecture. Progr Biol Cybernet Res 2008: 1, https://

books.google.com.my/books?hl=en&lr=&id=amcFw2f

QuPwC&oi=fnd&pg=PA1&dq=aþbrainþemulatingþcogni

tionþandþcontrolþarchitecture&ots=9HuKOk86uN&sig=3

8PMfkZnQ6eAnpyuOUorkFEhH_E&redir_esc=y#v=onepa

ge&q=a%20brain%20emulating%20cognition%20and

%20control%20architecture&f=false.

32. Rohrer B and Hulet S. A learning and control approach

based on the human neuromotor system. In: The first

IEEE/RAS-EMBS international conference on biomedical

robotics and biomechatronics, 2006. BioRob 2006, 2006,

pp. 57–61. IEEE.

33. Chalodhorn R, MacDorman KF, and Asada M. Humanoid

robot motion recognition and reproduction. Adv Robot

2009; 23(3): 349–366.

34. Noda K, Arie F, Suga Y, et al. Multimodal integration learn-

ing of robot behavior using deep neural networks. Robot

Autonom Syst 2014; 62(6): 721–736.

35. Noda K, Arie F, Suga Y, et al. Multimodal integration learning

of object manipulation behaviors using deep neural networks.

In: 2013 IEEE/RSJ international conference on intelligent

robots and systems (IROS), 2013, pp. 1728–1733. IEEE.

36. Kaiser M.Time-delay neural networks for control. In: Pro-

ceedings of the symposium on robot control, Vol. 94, 1994.

37. Waibel A, Hanazawa T, Hinton G, et al. Phoneme recognition

using time-delay neural networks. Acoust Speech Signal Proc

IEEE Trans 1989; 37(3): 328–339.

38. Ciresan DC, Meier U, Gambardella LM, et al. Deep, big,

simple neural nets for handwritten digit recognition. Neural

Comput 2010; 22(12): 3207–3220.

39. Moody JE, Hanson SJ, Krogh A, et al. A simple weight decay

can improve generalization. Adv Neural Inform Proc Syst

1995; 4: 950–957.

40. Krogh A and Hertz JA. A simple weight decay can improve gen-

eralization. Moody JE, Hanson SJ and Lippmann RP (eds), Tech-

nical Report no. P00002313, Nips Foundation, 1992.

41. Bishop CM. Pattern recognition and machine learning, Vol.

1. New York: Springer, 2006.

42. Lang KJ, Waibel AH, and Hinton GE. A time-delay neural

network architecture for isolated word recognition. Neural

Netw 1990; 3(l): 23–43.

How et al. 13

https://books.google.com.my/books?hl=en&lr=&id=amcFw2fQuPwC&oi=fnd&pg=PA1&dq=a+brain+emulating+cognition+and+control+architecture&ots=9HuKOk86uN&sig=38PMfkZnQ6eAnpyuOUorkFEhH_E&redir_esc=y#v=onepage&q=a%20brain%20emulating%20cognition%20and%20control%20architecture&f=false
https://books.google.com.my/books?hl=en&lr=&id=amcFw2fQuPwC&oi=fnd&pg=PA1&dq=a+brain+emulating+cognition+and+control+architecture&ots=9HuKOk86uN&sig=38PMfkZnQ6eAnpyuOUorkFEhH_E&redir_esc=y#v=onepage&q=a%20brain%20emulating%20cognition%20and%20control%20architecture&f=false
https://books.google.com.my/books?hl=en&lr=&id=amcFw2fQuPwC&oi=fnd&pg=PA1&dq=a+brain+emulating+cognition+and+control+architecture&ots=9HuKOk86uN&sig=38PMfkZnQ6eAnpyuOUorkFEhH_E&redir_esc=y#v=onepage&q=a%20brain%20emulating%20cognition%20and%20control%20architecture&f=false
https://books.google.com.my/books?hl=en&lr=&id=amcFw2fQuPwC&oi=fnd&pg=PA1&dq=a+brain+emulating+cognition+and+control+architecture&ots=9HuKOk86uN&sig=38PMfkZnQ6eAnpyuOUorkFEhH_E&redir_esc=y#v=onepage&q=a%20brain%20emulating%20cognition%20and%20control%20architecture&f=false
https://books.google.com.my/books?hl=en&lr=&id=amcFw2fQuPwC&oi=fnd&pg=PA1&dq=a+brain+emulating+cognition+and+control+architecture&ots=9HuKOk86uN&sig=38PMfkZnQ6eAnpyuOUorkFEhH_E&redir_esc=y#v=onepage&q=a%20brain%20emulating%20cognition%20and%20control%20architecture&f=false
https://books.google.com.my/books?hl=en&lr=&id=amcFw2fQuPwC&oi=fnd&pg=PA1&dq=a+brain+emulating+cognition+and+control+architecture&ots=9HuKOk86uN&sig=38PMfkZnQ6eAnpyuOUorkFEhH_E&redir_esc=y#v=onepage&q=a%20brain%20emulating%20cognition%20and%20control%20architecture&f=false
https://books.google.com.my/books?hl=en&lr=&id=amcFw2fQuPwC&oi=fnd&pg=PA1&dq=a+brain+emulating+cognition+and+control+architecture&ots=9HuKOk86uN&sig=38PMfkZnQ6eAnpyuOUorkFEhH_E&redir_esc=y#v=onepage&q=a%20brain%20emulating%20cognition%20and%20control%20architecture&f=false
https://books.google.com.my/books?hl=en&lr=&id=amcFw2fQuPwC&oi=fnd&pg=PA1&dq=a+brain+emulating+cognition+and+control+architecture&ots=9HuKOk86uN&sig=38PMfkZnQ6eAnpyuOUorkFEhH_E&redir_esc=y#v=onepage&q=a%20brain%20emulating%20cognition%20and%20control%20architecture&f=false
https://books.google.com.my/books?hl=en&lr=&id=amcFw2fQuPwC&oi=fnd&pg=PA1&dq=a+brain+emulating+cognition+and+control+architecture&ots=9HuKOk86uN&sig=38PMfkZnQ6eAnpyuOUorkFEhH_E&redir_esc=y#v=onepage&q=a%20brain%20emulating%20cognition%20and%20control%20architecture&f=false
https://books.google.com.my/books?hl=en&lr=&id=amcFw2fQuPwC&oi=fnd&pg=PA1&dq=a+brain+emulating+cognition+and+control+architecture&ots=9HuKOk86uN&sig=38PMfkZnQ6eAnpyuOUorkFEhH_E&redir_esc=y#v=onepage&q=a%20brain%20emulating%20cognition%20and%20control%20architecture&f=false
https://books.google.com.my/books?hl=en&lr=&id=amcFw2fQuPwC&oi=fnd&pg=PA1&dq=a+brain+emulating+cognition+and+control+architecture&ots=9HuKOk86uN&sig=38PMfkZnQ6eAnpyuOUorkFEhH_E&redir_esc=y#v=onepage&q=a%20brain%20emulating%20cognition%20and%20control%20architecture&f=false
https://books.google.com.my/books?hl=en&lr=&id=amcFw2fQuPwC&oi=fnd&pg=PA1&dq=a+brain+emulating+cognition+and+control+architecture&ots=9HuKOk86uN&sig=38PMfkZnQ6eAnpyuOUorkFEhH_E&redir_esc=y#v=onepage&q=a%20brain%20emulating%20cognition%20and%20control%20architecture&f=false
https://books.google.com.my/books?hl=en&lr=&id=amcFw2fQuPwC&oi=fnd&pg=PA1&dq=a+brain+emulating+cognition+and+control+architecture&ots=9HuKOk86uN&sig=38PMfkZnQ6eAnpyuOUorkFEhH_E&redir_esc=y#v=onepage&q=a%20brain%20emulating%20cognition%20and%20control%20architecture&f=false
https://books.google.com.my/books?hl=en&lr=&id=amcFw2fQuPwC&oi=fnd&pg=PA1&dq=a+brain+emulating+cognition+and+control+architecture&ots=9HuKOk86uN&sig=38PMfkZnQ6eAnpyuOUorkFEhH_E&redir_esc=y#v=onepage&q=a%20brain%20emulating%20cognition%20and%20control%20architecture&f=false
https://books.google.com.my/books?hl=en&lr=&id=amcFw2fQuPwC&oi=fnd&pg=PA1&dq=a+brain+emulating+cognition+and+control+architecture&ots=9HuKOk86uN&sig=38PMfkZnQ6eAnpyuOUorkFEhH_E&redir_esc=y#v=onepage&q=a%20brain%20emulating%20cognition%20and%20control%20architecture&f=false
https://books.google.com.my/books?hl=en&lr=&id=amcFw2fQuPwC&oi=fnd&pg=PA1&dq=a+brain+emulating+cognition+and+control+architecture&ots=9HuKOk86uN&sig=38PMfkZnQ6eAnpyuOUorkFEhH_E&redir_esc=y#v=onepage&q=a%20brain%20emulating%20cognition%20and%20control%20architecture&f=false
https://books.google.com.my/books?hl=en&lr=&id=amcFw2fQuPwC&oi=fnd&pg=PA1&dq=a+brain+emulating+cognition+and+control+architecture&ots=9HuKOk86uN&sig=38PMfkZnQ6eAnpyuOUorkFEhH_E&redir_esc=y#v=onepage&q=a%20brain%20emulating%20cognition%20and%20control%20architecture&f=false
https://books.google.com.my/books?hl=en&lr=&id=amcFw2fQuPwC&oi=fnd&pg=PA1&dq=a+brain+emulating+cognition+and+control+architecture&ots=9HuKOk86uN&sig=38PMfkZnQ6eAnpyuOUorkFEhH_E&redir_esc=y#v=onepage&q=a%20brain%20emulating%20cognition%20and%20control%20architecture&f=false
https://books.google.com.my/books?hl=en&lr=&id=amcFw2fQuPwC&oi=fnd&pg=PA1&dq=a+brain+emulating+cognition+and+control+architecture&ots=9HuKOk86uN&sig=38PMfkZnQ6eAnpyuOUorkFEhH_E&redir_esc=y#v=onepage&q=a%20brain%20emulating%20cognition%20and%20control%20architecture&f=false

43. Hochreiter S, Bengio Y, Frasconi P, et al. Gradient flow in recur-

rent nets: the difficulty of learning long-term dependencies, 2001.

44. Sutskever I, Vinyals O, and Le QV. Sequence to sequence

learning with neural networks. In: Ghahramani Z, Welling M,

Cortes C, Lawrence ND and Weinberger KQ (eds) Advances

in neural information processing systems, 2014, pp.

3104–3112. Nips Foundation.

45. An G. The effects of adding noise during backpropagation

training on a generalization performance. Neural Comput

1996; 8(3): 643–674.

14 International Journal of Advanced Robotic Systems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

