
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9, Issue-1, October 2019

1669

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2709109119/2019©BEIESP

DOI: 10.35940/ijeat.A2709.109119

Abstract: This paper provides a platform to investigate and

explore method of ‘partial decoding of JPEG images’ for image

classification using Convolutional Neural Network (CNN). The

inference is targeting to run on computer system with x86 CPU

architecture. We aimed to improve the inference speed of

classification by just using part of the compressed domain image

information for prediction. We will extract and use the ‘Discrete

Cosine Transform’ (DCT) coefficients from compressed domain

images to train our models. The trained models are then

converted into OpenVINO Intermediate Representation (IR)

format for optimization. During inference stage, full decoding is

not required as our model only need DCT coefficients which are

presented in the process of image partial decoding. Our

customized DCT model are able to achieve up to 90% validation

and testing accuracy with great competence towards the

conventional RGB model. We can also obtain up to 2x times

inference speed boost while performing inference on CPU in

compressed domain compared with spatial domain employing

OpenVINO inference engine.

Keywords: Discrete Cosine Transform (DCT), Convolutional

Neural Network (CNN), Intermediate Representation (IR), Open

Visual Inferencing and Neural Network Optimization

(OpenVINO)

I. INTRODUCTION

With the advancement of recent computing technologies

and artificial intelligence revolution, artificial neural

networks [1] are becoming more crucial in our daily life. It

represents a computational mathematical model which can

be either simple or complex structure formed by group of

artificial neurons aimed to solve real world problems [2][3].

It was inspired by the biological neural networks in human

body and modelled by using certain activation functions [4].

From time to time, with the trend of computer hardware

improvements, machine learning and deep learning have

found their path to dive into the daily life of humankind.

Revised Manuscript Received on September 22, 2019.

Tan, Kelvin Sim Zhen, Department of Electronic and Electrical

Engineering, University of Nottingham, Malaysia Campus Jalan Broga,

43500 Semenyih, Selangor D.E., Malaysia.

Boezura Borhanuddin, College of Graduate Studies, University Tenaga

Nasional (UNITEN) 43000 Kajang, Selangor D.E., Malaysia.

Wong, Yee Wan, Department of Electronic and Electrical Engineering,

University of Nottingham, Malaysia Campus Jalan Broga, 43500

Semenyih, Selangor D.E., Malaysia.

Ooi, Thomas Wei Min, Internet of Things Group Intel Technology

Sdn. Bhd. Jalan Sultan Azlan Shah, Kawasan Perindustrian Bayan Lepas,

11900 Bayan Lepas, Pulau Penang, Malaysia.

Khor, Jeen Ghee, Department of Electronic and Electrical Engineering,

University of Nottingham, Malaysia Campus Jalan Broga, 43500

Semenyih, Selangor D.E., Malaysia.

The beauty of deep learning with manoeuvring deep

neural networks [5] is that the network itself is capable to

perform feature extraction without human to do it manually.

Deep neural networks emerged over the years with more

profound network architectures going deeper in terms of

hidden layers. The most well-known deep neural networks

in pattern recognition is the convolutional neural network

(CNN) [6]. Conventionally, CNN [7] has substantially

contributed to the image processing task due to its

astounding ability to extract useful feature maps “Fig. 1” [8]

and information for performing classification [9] and object

detection [10].

Fig. 1 Feature maps appearance depend on layer of

CNN [11]

Many researchers commonly use deep learning to train

deep CNN for performing multiple tasks to ease applications

in both industry and academia. An example would be using

a cascaded CNN to detect traffic signs for transportation

purpose [12]. Beside vision recognition, CNN can be

applied to audio signals too, such as speech recognition by

using CNN to detect the emotional sentiments within

conversations between human [13].

For image classification and object detection, these

models are usually trained solely based on raw RGB images

(24-bits per RGB pixel), which caused the model only

accept raw RGB image during inference stage. Each pixel is

required to be captured for both training and inference phase

to be executed. This method will take substantially longer

time to train dataset [14] [15] with larger image database or

resolution. Most of the images on internet or in computer

today are stored in a compressed format to save space,

theseimages are in a „compressed domain‟ form. To conduct

inference on these images, full decoding or decompression

is required for obtaining raw image data, which will cost us

extra computational power and time.

To save computational power and improve efficiency, a

new idea of training models such to perform inference on

compressed domain image data has hit the research arena.

Classification of Compressed Domain Images

Utilizing Open VINO Inference Engine
Tan, Kelvin Sim Zhen, Boezura Borhanuddin, Wong, Yee Wan, Ooi, Thomas Wei Min,

Khor, Jeen Ghee

Classification of Compressed Domain Images Utilizing Open VINO Inference Engine

1670

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2709109119/2019©BEIESP

DOI: 10.35940/ijeat.A2709.109119

Recent studies and research on compressed domain

analytics have becoming more popular [16]. The underlying

motivation and mathematical fundamentals for compression

algorithm is the Discrete Cosine Transformation (DCT)

[17]. 2D DCT-II is used to convert image from spatial

domain into frequency domain for better compression [18].

It reduces the spatial redundancy within raw image data to

achieve higher amount of compression. Several processes

such as quantization and entropy encoding comes after 2D

forward DCT to pack the image data into its highest possible

compression state.

In this paper, we presented some experimental setup that

analyzed the performance difference for inferencing image

on devices powered by Intel x86 CPU architecture under

spatial domain (RGB) and compressed domain (DCT). The

methodology presented here contains minor modifications

from the conventional JPEG compression standards [19][20]

with several simplifications. The main contributions of this

paper covered the following ideas:

Accelerate inference speed by performing classification

on compressed domain images using OpenVINO inference

engine.

Optimize simple RGB and DCT classification models by

converting them into Open VINO Intermediate

Representation (IR) format to run optimally on Intelx86

CPU architecture.

Leverage compressed domain image data to perform

inference on normal CPU instead of Field-Programmable

Gate Array (FPGA) or Graphic Processing Unit (GPU).

The remaining of this paper will be structured into four

main sections; whereby section II will cover the standard

JPEG compression CODEC, some recent compressed

domain neural networks and hardware acceleration

implementations. Section III will establish the methodology

and major pipelines of our work while section IV will

provide discussion for analyzing the results and

performances of our work.

II. RELATED WORK

A. Fundamentals of Image Compression

Digital media such as image and video on internet tend to

grow tremendously over the years. With more and more data

required to be stored rapidly, methods of compressing

digital media acquire essential priority for efficient storage.

Image compressions pursue to encode the original raw

image with lesser bits [21]. It is used to diminish image

redundancy such to save or transfer image data in a more

effective way. Popular image compression algorithms such

as the wavelet and JPEG compression are found to be

coherent [22]. We will focus on JPEG image here as the

experiment conducted is based on JPEG image data.

Fig. 2 Standard JPEG image compression and decompression [22]

The JPEG compression algorithm [19], as shown in “Fig.

2”, is the most popular image compression standard known

today. It started off with partitioning the image into 8x8

Minimum Coded Unit (MCU), extra padding is applied

towards the image edge if the image size is not multiplies of

8. Next, color conversion from RGB domain into the YCbCr

domain is applied throughout the image for every single

pixel. The image will appear to be more compact in YCbCr

color space representation. Down sampling sometimes is

applied towards the Chrominance channels (CB and Cr) for

a more compact format. “Fig. 3” below portrayed the

individual channels of YCbCr after converted from RGB

image. The image used is „Lena‟ of size 512x512 [23].

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9, Issue-1, October 2019

1671

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2709109119/2019©BEIESP

DOI: 10.35940/ijeat.A2709.109119

Fig. 3 Image in YCbCr domain for each channels

The upcoming phase includes the most vital process along

the compression pipeline which converts the pixel

information from spatial to frequency domain. This is done

by applying 2D DCT-II [17] towards each of the 8x8 MCU

block. 2D DCT-II treats the image as a spatial 2D signal. It

takes the advantage of human vision drop-off threshold at

higher frequencies by eliminating redundant spatial image

information in each MCU blocks. The equation for 2D

DCT-II (1) is featured as below with MCU block size of 8.

Fig. 4 DC coefficients of DCT image in YCbCr domain

After performing 2D DCT-II towards each of the MCU

blocks, each block will result in 64 frequency domain data

whereby the most top left data represent the DC coefficient

while the remaining 63 data are the AC coefficients. By

disregard all the 63 AC coefficients and acquire all the DC

coefficient only, we will reduce the original Lena image size

from 512x512 to 64x64 (h/8, w/8). “Fig. 4” shows that the

DC components of each MCU blocks are sufficient to

represent the image detail for the same Lena image.

The subsequent process will further remove higher

frequency components within the MCU block by quantizing

each of the 8x8 partitions. Quantization matrix of the same

size as MCU blocks will be applied towards each MCU. The

quantization matrix from quantization tables can be tuned

accordingly to trade-off between image quality and

compression rate. Standard quantization tables are usually

used for simplification and standardization.

The final stage of image compression consists of zigzag

encoding and Huffman encoding, which usually summarized

as entropy encoding. The zigzag encoding will convert 2D

quantized image into 1D array following a special sequential

pattern applied to each of the MCU blocks. Huffman

encoding [24] further encode each of the MCU blocks into

special bytes by referring to their frequency of presence

within the image. Data which is often occurring within the

image will be encoded with fewer bits and vice versa. It

takes certain amount of time to compute the respective

Huffman binary tree which is required to generate the

relative Huffman Table so sometimes standardized Huffman

Tables are used so save time in image compression.

Finally, encoded binary strings are converted and saved as

bytes with ‘.jpg’ file extension. It includes all the format of a

standard JFIF file with special headers and markers [25].

The additional JFIF annotations are handled by specific

library such as the ‘libjpeg’ [26]. For decompression of

JPEG images, it will be exactly the reverse method of

compression pipeline following the sequence as shown in

“Fig. 2”.

The issues with encoding and decoding compressed

images are time consuming and power inefficient. For the

purpose of better storage and transfer rate, image

compression is effective. But for usage in deep learning

tasks, we hope to eliminate, or minimize the portion of

image compression procedures, and try to use the

information in between image encoding and decoding for

classification or object detection.

Classification of Compressed Domain Images Utilizing Open VINO Inference Engine

1672

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2709109119/2019©BEIESP

DOI: 10.35940/ijeat.A2709.109119

B. Compressed Domain in Neural Networks

Over the past few years, popular deep neural networks

such as VGG-Net [27], Squeeze-Net [28] and Res-Net [29]

have celebrated huge implementation for its overwhelming

achievement in image classification. Visual Geometry

Group(VGG) kick-started by going deeper in convolution

with using very small filter size configurations. The authors

in [27] came out with several deep network designs with

distinctive blocks of convolution depth to enhance the

model performance. With up to millions of trainable

parameters and large model size, the drawback is that the

model will take a long time to train and only be able to use

on higher end computer system. Besides, with deeper layers

of convolutional blocks, the respective training and testing

error will be higher. Deep residual learning established

„Residual Network‟ (Res-Net) [29] by computing a residual

functions with reference towards the input layers. This novel

method allows deep neural networks to go deeper up to 152

layers, which is 8x deeper than VGG-Nets while achieving a

low error of 3.57% on the Image Net [30] test set. On the

contrary, Res-Net is also a huge model with more

parameters which takes time to train.

A so called „Squeeze-Net‟ [28] architecture was modified

from Alex-Net [31] with lesser parameters and smaller

model size. It is easier to train and deploy towards end user.

Mobile-Net [32] is also a similar small architecture which

extends the model ability from image classification towards

object detection. It is specially designed to fit in mobile

devices for different applications.

Since much of the deep neural network architectures are

trained based on 24-bit raw image data, could we possibly

train these models with compressed or partially decoded

image data? As more compressed domain images are

presented in real world situation compared with spatial

domain images, more researches are conducted based on

compressed domain deep learning framework to accelerate

the deep learning process.

Dan Fu and Gabriel Guimaraes [33] introduced a method

of ‘DCT truncation’ into the model training pipeline. By

applying 2D DCT-II towards a spatial domain RGB image

and modifying the image size such to mimic the compressed

domain image data, the pre-processed image is feed into the

network and train as usual. Similar approach was presented

in [34] whereby models are trained based on DCT

coefficients of MNIST [35] and CIFAR-10 datasets. This

method was experimented on classification task by using

very basic CNN on compressed domain images by applying

DCT towards raw images yield a competitive result,

whereby partial decoding from the compressed image

(JPEG) is only needed during the inference stage. Both of

the methods does not consider some of the JPEG CODEC

procedures, in essence the Chroma down-sampling and

quantization.

The author in [36] demonstrated using stacked DCT based

sparse auto-encoders architecture for designing the model.

The tradeoff point is taken between number of DCT

coefficients selected, accuracy and training time. By

performing experiment on the MNIST [35] datasets, the

training time for DCT domain is 4 times faster than the

spatial domain. Another paper [37] trained CNN (modified

ResNet-50) straight from the block-wise DCT coefficients

available during the image compression stage and achieve

similar accuracy with a speed of 1.77x faster than the

original model. Similar papers [38] [39] also exhibit

different approaches for handling compressed domain

images straight from CNN.

We came across lots of methods and models featuring

deep learning in compressed domain, but mostly contains

simplified or modified JPEG compression standard.

C. Implementation on Hardware Acceleration

Some of the recent works also focused on utilizing

hardware accelerator such as Field-Programmable Gate

Array (FPGA) and Graphic Processing Unit (GPU) to run

machine learning algorithms. Zhao et. al [40] presented an

FPGA architecture design based on CNN and Support

Vector Machine (SVM) algorithms. The hardware design

workflow is well suitable to run on the above two

algorithms as well as other models. Similar work have been

done in [41] to design CNN accelerator. Ardestaniet. al [42]

showed by using hardware units on site computing with

ISAAC and Newton architecture, it can perform better than

digital accelerators. FPGA based accelerator is cheap when

comparing with GPU, whereby FPGA is also power

efficient and flexible in design.

As edge inferencing [43] is as important as model

training, research has also fond to reduce the latency of

inference time locally rather than connecting the edge

devices towards the cloud server for inferencing. To enable

model to run efficiently on the edge device such as an

embedded device, model compression [44] is used to reduce

model size and complexity. Vanhouckeet. al [45]

demonstrated some methods to cut down computational

power of neural networks inference on x86 architecture

CPU.

FPGA is hard to design and implement, without specific

knowledge, we were unable to get the most out of it. GPUs

are expensive and power intensive equipment. It may

provide us higher performance, but some edge devices will

be unable to support GPU. Since FPGA and GPU are out of

the choices, it left us with CPU whereas it exists in most of

the computer system devices today!

III. METHODOLOGY

The objective of conducting this experiment is to make

use of compressed domain techniques in image compression

to improve the performance of image classification on CPU

without the use of GPUs or FPGAs. Our method, namely

„Partial Decoding of JPEG Images‟ is to obtain nominal

DCT coefficients from encoded image streams to perform

classification. The whole pipeline will cover the following

procedures:

 Import trained models (under both RGB and DCT

domain).

 Read in images from specific directory or webcam to

obtain encoded JPEG images stream.

 Partial decoding of JPEG compressed image streams to

obtain „Nominal DCT coefficients‟.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9, Issue-1, October 2019

1673

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2709109119/2019©BEIESP

DOI: 10.35940/ijeat.A2709.109119

 Standardization of „Nominal DCT coefficients‟.

 Feed the DCT coefficients into a trained DCT CNN

model converted into OpenVINO IR format.

 Perform inference utilizing OpenVINO inference

engine.

The difference between this method with the conventional

one is that this method does not require JPEG image full

decoding to obtain the spatial domain information (RGB) of

image for inference. This is because the „Nominal DCT

coefficients‟ from JPEG image is sufficient to provide

useful information for the neural network to recognize

specific patterns or feature maps. Without the need of

decompressingthe whole image, inference speed of

classification is expected to increase when comparing with

spatial domain (RGB) images.

Two different pipelines are shown in “Fig. 5” as below are

being tested and explored in this paper.

Fig. 5 RGB and DCT inferencing using different

pipelines

In our experiment, we use „OpenCV2‟ library to perform

full decoding towards the JPEG compressed images and

obtain the RGB pixel data for inference. While for the DCT

path, we were using a module name ‘jpeg2dct’ from the

paper [37] to obtain our DCT coefficients. The RGB pixel

and DCT coefficients are then feed towards their respective

CNN model for inference and the consecutive classification

results are computed.

Initially, the dataset is collected and pre-processed to train

the aforementioned two models on a computer system and

deployed as OpenVINO Intermediate Representation (IR)

format. The models will be exported from the computer to

serve as a more optimized model for inference later.

A. CNN Model Architecture for different domains

Two simple CNN models that will be used for

classification in our experiment is established in Table I and

Table II as below. These models are adapted and modified

from the paper [34]. Simple CNN models are used as the

datasets in the experiment later does not require thick

convolution layers. The input layer of the RGB model is

constructed from a simple CNN layer with default size of

224x224 while the DCT model contained customized input

channels to fit the DCT coefficients of different down

sampling ratio.

Table. I RGB CNN Model

Layer Name Kernel Type [f, s] Output Size

Conv_2D_1 [3x3, 1x1] 224x224, 16

MaxPooling_2D_1 [3x3, 2x2] 112x112, 16

Dropout_1 p = 0.25 112x112, 16

Conv_2D_2 [3x3, 1x1] 112x112, 32

MaxPooling_2D_2 [3x3, 2x2] 56x56, 32

Dropout_2 p = 0.25 56x56, 32

Conv_2D_3 [3x3, 1x1] 56x56, 64

MaxPooling_2D_3 [3x3, 2x2] 28x28, 64

Dropout_3 p = 0.25 28x28, 64

Conv_2D_4 [3x3, 1x1] 28x28, 128

MaxPooling_2D_4 [3x3, 2x2] 14x14, 128

Dropout_4 P=0.25 14x14, 128

Flatten - 1, 25088

Dropout_5 p = 0.50 -

Softmax - 1, class_number

Table. II DCT CNN Model

Layer Name Kernel Type [f, s] Output Size Inherited From

DCT_Cb (Input) - 14x14, 64 -

DCT_Cr (Input) - 14x14, 64 -

DCT_Y (Input) - 28x28, 64 -

UpSampling2D_cb [2x2, 2x2] 28x28, 64 DCT_Cb

UpSampling2D_cr [2x2, 2x2] 28x28, 64 DCT_Cr

Concat2D - 28x28, 192 DCT_Y, UpSampling2D_cb

UpSampling2D_cr

Classification of Compressed Domain Images Utilizing Open VINO Inference Engine

1674

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2709109119/2019©BEIESP

DOI: 10.35940/ijeat.A2709.109119

Conv2D_1a [3x3, 1x1] 28x28, 32 Concat2D

Conv2D_1b [3x3, 1x1] 28x28, 32 Conv2D_1a

MaxPooling2D_1 [2x2, 2x2] 14x14, 32 Conv2D_1b

Dropout_1 P=0.35 14x14, 32 MaxPooling2D_1

Conv2D_2a [3x3, 1x1] 14x14, 64 Dropout_1

Conv2D_2b [3x3, 1x1] 14x14, 64 Conv2D_2a

MaxPooling2D_2 [2x2, 2x2] 7x7, 64 Conv2D_2b

Dropout_2 P=0.5 7x7, 64 MaxPooling2D_2

Flatten - 1, 3136 Dropout_2

Softmax - 1, class_number Flatten

The difference between the two models above as shown in

Table I and Table II is that the RGB model contains four

CNN blocks (1x Convolution, 1x Max-Pooling, 1x Dropout)

while the DCT model only have two CNN blocks (2x

Convolution, 1x Max-Pooling, 1x Dropout). The individual

mentioned blocks for RGB and DCT models are extracted

and shown in “Fig. 6” below for better clarity. The character

‘f’ stands for convolution filter sliding window size, while

‘s’represents the stride.

Fig. 6 RGB CNN block (left); DCT CNN block (right)

We design the DCT model to contain two convolution

layers in each block, whereby the RGB model only contain

one convolution layer in each block. The reason is because

DCT domain image contain 64 coefficients of three

channels resulting in 192 image data-like array in depth after

concatenating. With only one layer of convolution will not

be enough to acquire essential feature maps. Therefore two

convolution layers were used in DCT model. The design of

number of layers for DCT model is also by experimenting

number of neurons and the respective inference speed.

Number of parameters, training time and accuracy of the

aforementioned models will be evaluated in the subsequent

section. Trained models will be initially saved as Tensor

flow standard proto-buff (.pb) format and later exported into

OpenVINO IR format, with the following settings listed as

below:

Table. III Model Conversion Settings

Conversion

Setup

DCT Model RGB Model

Scaling 512.0 255.0

Batch Size 1 1

Data Type FP32 FP32

Reverse Input

Channels

True True

From Table III above, only the scaling setup is different

while the other settings remain the same. Explanation for

different scale value towards both models will be covered in

the subsequent section. Batch size is set to 1 such that the

model only takes in single image at a time for inferencing.

Data type of FP32 stands for 32-bits floating point precision

standard. While parsing „True‟ value towards the reverse

input channels, the input will be altered from „height x width

x channels‟ (H x W x C) into „channels x width x height‟ (C

x W x H).

B. Dataset Preparation

To assess the performance of our methods, three datasets

are used in our experiment, i.e. Malaria [46], Pneumonia

[47] and Natural Images [48]. These three datasets were

obtained from official Kaggle website. Malaria is a

hazardous symptom transmitted by Anopheles mosquito. It

usually parasites in the red blood cells in the human body

and replicate in a very short time span, causing the cell to

explode. Pneumonia is the human lung infection caused by

virus or bacteria. Therefore it is equally important to

perform classification task on these datasets for detection

such an early cure can be carried out.

Malaria and pneumonia dataset consisted of 2 classes

while Natural Images dataset consisted of 8 classes

(airplane, car, cat, dog, flower, fruits, bike, and person).

These dataset were split into training, validation and testing

by a ratio of 7:2:1. Number of images per class after

splitting are shown in Table IV below in brief.

Table. IV Number of Images per Class after Splitting

Dataset Training

Images

Validation

Images

Testing

Images

Malaria 2800 800 400

Pneumonia 1050 300 150

Natural

Images

490 140 70

After the dataset is downloaded, a series of pre-processing

algorithm is applied towards all the images. Image

augmentation is not carried out for simplicity. Our main

concern is able to perform inference on compressed domain

images, more intuitively the standard JPEG image. Hence,

we only conduct a few initial steps following the partial

decoding, without applying pruning.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9, Issue-1, October 2019

1675

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2709109119/2019©BEIESP

DOI: 10.35940/ijeat.A2709.109119

Fig. 7 Comparison between partial and full decoding of JPEG image

From “Fig. 7” as illustrated above, we can clearly

differentiate between full and partial decoding using

different Python module to obtain the final image data

required for training or inferencing. For an RGB original

image shape of 224x224x3, the three DCT coefficients

(include one Luminance channel and two Chrominance

channels) obtained will be [28x28x64], [14x14x64],

[14x14x64] respectively. The compressed image is

subjected to a down sampling ratio of 4:2:0.

After we obtain the above three channels of DCT

coefficients, the data range is in between -1024 to +1024.

Standardization is applied towards the dataset by dividing

the DCT image array by 512. This narrows the dataset range

into -2 to +2. Normalization is found to produce worse result

compared with standardization as the accuracy is lower.

Besides, with wider range of sample available, details of the

coefficients can be captured by the network more easily to

create related feature maps.

For RGB domain data, the original range of 0 to +255 is

normalized by dividing 255 to position the range in between

0 to +1. After pre-processing of DCT and RGB domain data,

they are saved into Python Numpy array under different

directory.

IV. EXPERIMENTAL RESULT AND DISCUSSION

A. Experimental setup

We have a system running on a CPU of Intel Core i7-

8750H, 6 cores with frequency of 2.2GHz to 4.1GHz. The

RAM is 64GB with 500GB of Solid-State Drive. The

experiment is built on top of Ubuntu 16.04LTS with

OpenVINO 2019 R2 version. The computing language of

the whole experiment is based on Python script. Therefore

theresults in this experiment shall not be compared with

other experiments with different computing language

domain as discrepancies may present. Keras (version 2.2.4-

tf) of Tensor flow framework (version 1.13.1) is used for

creating our CNN models and evaluate its performance.

On any system or computer powered by Intel CPU

whereby OpenVINO inference engine can support, the IR

models can be deployed onto that system with ease.

Encoded images stream in either real time provided by M-

JPEG webcam or pre-saved images can be loaded from

storage for inference. In our experiment, we setup a

directory to contain testing JPEG images and do prediction

based on them.

B. Evaluation on inference time

Fig. 8 Inference time track

The inferencing experiment is done with looping through

all testing images saved in inference directory. Inference

process includes loading the OpenVINO IR model, loading

image to perform partial or full decoding with accordance

towards the domain and finally perform prediction (refer to

Fig. 5). The inference time is calculated based on loading

image, decoding image and finally feeding the image into

the model for inference. Procedures where time is tracked

are shown in “Fig. 8” below for clarity.

To show the practical inference process, Open CV Python

library is used to display the inferred image on two separate

frames comparing RGB and DCT domain inferencing.

Respective inference result, image decoding FPS and total

inferencing FPS will be shown on the screen. For demo

purpose, each image is delayed for around 0.1 second. The

actual test for benchmarking the inference FPS later will not

contain any delay.

Classification of Compressed Domain Images Utilizing Open VINO Inference Engine

1676

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2709109119/2019©BEIESP

DOI: 10.35940/ijeat.A2709.109119

Fig. 9 Malaria inferencing (left – RGB, right – DCT)

Fig. 10 Natural images inferencing (left – RGB, right –

DCT)

Fig. 11 Pneumonia inferencing (left – RGB, right – DCT)

The inference process is run on OpenVINO inference

engine and some performance comparison is done between

full decoding (OpenCV2) and partial decoding (jpeg2dct).

The performance of frame rate (Frame Per Second, FPS) as

recorded below are compiled based on an average taken out

of 5 runs of the whole inference process. The inference time

tracked for single image is from loading the image until

feeding the image into the executable OpenVINO IR model.

Each image will be iterated 1000 times to get the average

frame rate. All images have a standard size of 224x224x3.

Fig. 12 Inference speed comparison between RGB and

DCT domain

Table V. Model Conversion Settings

Dataset Inference Speed Improvement

Pneumonia 1.95x

Malaria 1.98x

Natural Images 2.06x

From Table V above, we can clearly see that the inference

speed (FPS) for partial decoding is higher than full

decoding. The inference frame rate of compressed domain

images is about two times greater than the spatial domain

images. In other words, this means that more computational

power is saved in return for 100% faster in inference speed.

The inference speed (FPS) difference between “Fig. 12” and

the figures shown above (Fig. 9, Fig. 10, Fig. 11) is the use

of slight delay during the display for us to visualize the

detected inference result.

C. CNN model properties and performances

In this section, we will discuss about the performances of

the CNN models and assess their difference based on

varying input domain of dataset – spatial domain (RGB) and

compressed domain (DCT). Table VI below summarized the

performance of the two models based on different datasets

of different domain.

Table VI. CNN Model Performance

Model RGB CNN

Model

DCT CNN

Model

Pneumonia

Validation Accuracy

(%)

95.57 97.47

Testing Accuracy

(%)

95.25 93.67

Trainable

Parameters (mil)

0.15 0.13

Malaria

Validation Accuracy

(%)

94.56 94.38

Testing Accuracy

(%)

93.00 90.25

Trainable

Parameters (mil)

0.15 0.13

Natural Images

Validation Accuracy

(%)

90.45 91.07

Testing Accuracy

(%)

90.00 89.82

Trainable

Parameters (mil)

0.3 0.15

From Table VI above, the testing accuracy difference

between spatial and compressed domain is within 5%.

Compressed domain models exhibit similar or higher

validation and testing accuracy compared with spatial

domain. The minor difference between model trainable

parameters of RGB and DCT CNN models shall not affect

the inference speed and model accuracy as the effect is

minimal.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9, Issue-1, October 2019

1677

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2709109119/2019©BEIESP

DOI: 10.35940/ijeat.A2709.109119

V. CONCLUSION AND FURTHER WORK

Along the experiment presented above, we can clearly

visualize the application pipeline along the whole IoT

industry from capturing input of image streams towards

obtaining the classification result. With our method of

training the neural networks in the compressed domain and

inferencing done on partially decompressed image, we

achieve averagely two times faster in inference speed when

comparing with the RGB data retrieved from compressed

domain images.

The benefits of performing classification on compressed

domain images include saving time and computational

power yet provide a faster inference speed towards real time

application. It also improve the CPU inference speed by

solving hardware deficiency using software tweaks. The

only drawback of having this task done on compressed

domain (DCT) is sometimes lower accuracy is obtained

compared with spatial domain (RGB). The accuracy of the

model is actually depends on the chosen model and dataset

variations. With the continuous advancement of technology

and design of new neural network architectures, we believe

that the accuracy of such task is not a critical issue from

time to time. The accuracy can be improved by feeding the

network with more dataset and conduct image augmentation

for acquiring a more robust network.

In a nutshell, analytics and network models of compressed

domain are such an essential contribution towards a smarter

computational intelligence for our digital world tomorrow.

ACKNOWLEDGMENT

This work is supported by Internet of Things Group

(IOTG) – Intel Labs for Researchers, under Intel Malaysia.

Profound guidance is provided by my PhD supervisor Ir. Dr.

JG Khor and Dr Wong Yee Wan from the University of

Nottingham Malaysia Campus, and my manager from Intel

– Dr Thomas Ooi Wei Min.

REFERENCES

1. E. Parveen Kumar and E. Pooja Sharma, “Artificial Neural Networks-

A Study,” Int. J. Emerg. Eng. Res. Technol., vol. 2, no. 2, pp. 143–148,

2014.

2. E. Y. Li, “Artificial neural networks and their business applications,”

vol. 27, pp. 303–313, 1994.

3. K. Kumar, G. Sundar, and M. Thakur, “Advanced Applications of

Neural Networks and Artificial Intelligence: A Review,” no. May,

2012.

4. C. E. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation

Functions: Comparison of Trends in Practice and Research for Deep

Learning,” pp. 1–20.

5. N. Kriegeskorte, “Deep neural networks: a new framework for

modelling biological vision and brain information processing,” 2015.

6. S. Albawi and T. A. Mohammed, “Understanding of a Convolutional

Neural Network,” 2017 Int. Conf. Eng. Technol., pp. 1–6, 2017.

7. K. O‟Shea and R. Nash, “An Introduction to Convolutional Neural

Networks,” no. November, 2015.

8. M. D. Zeiler and R. Fergus, “Visualizing and Understanding

Convolutional Networks,” pp. 818–833, 2014.

9. E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Fully

convolutional neural networks for remote sensing image

classification,” Int. Geosci. Remote Sens. Symp., vol. 2016-Novem, pp.

5071–5074, 2016.

10. M. Lokanath, K. S. Kumar, and E. S. Keerthi, “Accurate object

classification and detection by faster-RCNN,” IOP Conf. Ser. Mater.

Sci. Eng., vol. 263, no. 5, 2017.

11. S. Pöcheim, “Convolutional Neural Networks,” 2017. [Online].

Available:

https://wiki.tum.de/display/lfdv/Convolutional+Neural+Networks.

[Accessed: 11-Aug-2019].

12. D. Zang, J. Zhang, D. Zhang, M. Bao, J. Cheng, and K. Tang, “Traffic

sign detection based on cascaded convolutional neural networks,” 2016

IEEE/ACIS 17th Int. Conf. Softw. Eng. Artif. Intell. Netw.

Parallel/Distributed Comput. SNPD 2016, pp. 201–206, 2016.

13. P. Tzirakis, J. Zhang, and B. W. Schuller, “End-to-end speech emotion

recognition using deep neural networks,” ICASSP, IEEE Int. Conf.

Acoust. Speech Signal Process. - Proc., vol. 2018-April, pp. 5089–

5093, 2018.

14. M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J.

Winn, and A. Zisserman, “The Pascal Visual Object Classes Challenge:

A Retrospective,” Int. J. Comput. Vis., vol. 111, no. 1, pp. 98–136,

2014.

15. T. Y. Lin et al., “Microsoft COCO: Common objects in context,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.

Notes Bioinformatics), vol. 8693 LNCS, no. PART 5, pp. 740–755,

2014.

16. R. V. Babu, M. Tom, and P. Wadekar, “A survey on compressed

domain video analysis techniques,” Multimed. Tools Appl., vol. 75, no.

2, pp. 1043–1078, 2016.

17. N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete Cosine Transform,”

IEEE Trans. Comput., vol. C–23, no. 1, pp. 90–93, 1974.

18. X. Ji, C. Zhang, J. Wang, and S. H. Boey, “Fast 2-D 8×8 discrete

cosine transform algorithm for image coding,” Sci. China, Ser. F Inf.

Sci., vol. 52, no. 2, pp. 215–225, 2009.

19. G. K. Wallace, “Wallace.JPEG,” JPEG Still Pict. Compression Stand.,

pp. 1–17, 1991.

20. N. Kashyap, “JPEG Image Code Format,” pp. 1–21.

21. C. Science and S. Engineering, “Image Compression Technique under

JPEG by Wavelets Transformation,” Int. J. Adv. Res. Comput. Sci.

Softw. Eng., vol. 4, no. 6, pp. 808–818, 2014.

22. S. Rawat and A. K. Verma, “Survey paper on image compression

techniques,” Int. Res. J. Eng. Technol., vol. 4, no. 3, pp. 1–6, 2017.

23. P. Meerwald, “Lena Image.”.

24. S. L. Bawa and D. A. V College, “Compression Using Huffman

Coding Mamta Sharma,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol.

10, no. 5, p. 133, 2010.

25. E. Hamilton, “JPEG File Interchange Format,” Interchange, vol. 81,

pp. 467–490, 2004.

26. SourceForge, “libjpeg.” [Online]. Available:

http://libjpeg.sourceforge.net/. [Accessed: 12-Aug-2019].

27. K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks

for Large-Scale Image Recognition,” pp. 1–14, 2014.

28. F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and

K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5MB model size,” pp. 1–13, 2016.

29. K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for

Image Recognition,” 2015.

30. J. D. J. Deng, W. D. W. Dong, R. Socher, L.-J. L. L.-J. Li, K. L. K. Li,

and L. F.-F. L. Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image

Database,” 2009 IEEE Conf. Comput. Vis. Pattern Recognit., pp. 2–9,

2009.

31. B. Monien, R. Preis, and S. Schamberger, “ImageNet Classification

with Deep Convolutional Neural,” Handb. Approx. Algorithms

Metaheuristics, pp. 60-1-60–16, 2007.

32. A. G. Howard et al., “MobileNets: Efficient Convolutional Neural

Networks for Mobile Vision Applications,” 2017.

33. D. Fu and G. Guimaraes, “Using Compression to Speed Up Image

Classification in Artificial Neural Networks Background: The Discrete

Cosine Transform,” pp. 1–10, 2016.

34. M. Ulicny and R. Dahyot, “On using CNN with DCT based Image

Data,” Proc. 19th Irish Mach. Vis. Image Process. Conf., pp. 44–51,

2017.

35. F. Chen, N. Chen, H. Mao, and H. Hu, “Assessing four Neural

Networks on Handwritten Digit Recognition Dataset (MNIST),” no.

June, pp. 1–4, 2018.

36. X. C. Q. X. X. Zou, Xiaoyi; Xu, “HIGH SPEED DEEP NETWORKS

BASED ON DISCRETE COSINE TRANSFORMATION,” Int. Conf.

Image Process., pp. 5921–5925, 2014.

Classification of Compressed Domain Images Utilizing Open VINO Inference Engine

1678

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2709109119/2019©BEIESP

DOI: 10.35940/ijeat.A2709.109119

37. L. Gueguen, A. Sergeev, R. Liu, and J. Yosinski, “Faster Neural

Networks Straight from JPEG,” Neural Inf. Process. Syst., vol. 2, no.

Nips, pp. 5–8, 2018.

38. Y. Wang, C. Xu, S. You, D. Tao, and C. Xu, “CNNpack: Packing

Convolutional Neural Networks in the Frequency Domain,” Nips, no.

Nips, pp. 421–434, 2016.

39. B. Li, H. Luo, H. Zhang, S. Tan, and Z. Ji, “A multi-branch

convolutional neural network for detecting double JPEG compression,”

pp. 1–16, 2017.

40. R. Zhao, W. Luk, X. Niu, H. Shi, and H. Wang, “Hardware

Acceleration for Machine Learning,” Proc. IEEE Comput. Soc.

AnnuSymp. VLSI, ISVLSI, vol. 2017-July, pp. 645–650, 2017.

41. Z. .Zheng and T. . Zhang, “Hardware Accelerator Design for Machine

Learning,” Sch. Enviromental Sci., 2012.

42. A. S. Ardestani, “Design and Optimization of Hardware Accelerators

for Deep Learning,” no. May, pp. 1–10, 2017.

43. C. J. Wu et al., “Machine learning at facebook: Understanding

inference at the edge,” Proc. - 25th IEEE Int. Symp. High Perform.

Comput. Archit. HPCA 2019, pp. 331–344, 2019.

44. Q. Zhang et al., “Efficient deep learning inference based on model

compression,” IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognit. Work., vol. 2018-June, pp. 1776–1783, 2018.

45. V. Vanhoucke, A. Senior, and M. Mao, “Improving the speed of neural

networks on CPUs,” Proc. Deep Learn. …, pp. 1–8, 2011.

46. Arunava, “Malaria Cell Images Dataset,” 2018. [Online]. Available:

https://www.kaggle.com/iarunava/cell-images-for-detecting-malaria.

[Accessed: 30-Apr-2019].

47. P. Mooney, “Chest X-Ray Images (Pneumonia),” 2018. [Online].

Available: https://www.kaggle.com/paultimothymooney/chest-xray-

pneumonia/metadata. [Accessed: 30-Apr-2019].

48. P. Roy, “Natural Images Dataset,” 2018. [Online]. Available:

https://www.kaggle.com/prasunroy/natural-images. [Accessed: 30-Apr-

2019].

