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Abstract: This paper provides a platform to investigate and 

explore method of ‘partial decoding of JPEG images’ for image 

classification using Convolutional Neural Network (CNN). The 

inference is targeting to run on computer system with x86 CPU 

architecture. We aimed to improve the inference speed of 

classification by just using part of the compressed domain image 

information for prediction. We will extract and use the ‘Discrete 

Cosine Transform’ (DCT) coefficients from compressed domain 

images to train our models. The trained models are then 

converted into OpenVINO Intermediate Representation (IR) 

format for optimization. During inference stage, full decoding is 

not required as our model only need DCT coefficients which are 

presented in the process of image partial decoding. Our 

customized DCT model are able to achieve up to 90% validation 

and testing accuracy with great competence towards the 

conventional RGB model. We can also obtain up to 2x times 

inference speed boost while performing inference on CPU in 

compressed domain compared with spatial domain employing 

OpenVINO inference engine. 

 

Keywords: Discrete Cosine Transform (DCT), Convolutional 

Neural Network (CNN), Intermediate Representation (IR), Open 

Visual Inferencing and Neural Network Optimization 

(OpenVINO) 

I. INTRODUCTION 

With the advancement of recent computing technologies 

and artificial intelligence revolution, artificial neural 

networks [1] are becoming more crucial in our daily life. It 

represents a computational mathematical model which can 

be either simple or complex structure formed by group of 

artificial neurons aimed to solve real world problems [2][3]. 

It was inspired by the biological neural networks in human 

body and modelled by using certain activation functions [4]. 

From time to time, with the trend of computer hardware 

improvements, machine learning and deep learning have 

found their path to dive into the daily life of humankind.  
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The beauty of deep learning with manoeuvring deep 

neural networks [5] is that the network itself is capable to 

perform feature extraction without human to do it manually. 

Deep neural networks emerged over the years with more 

profound network architectures going deeper in terms of 

hidden layers. The most well-known deep neural networks 

in pattern recognition is the convolutional neural network 

(CNN) [6]. Conventionally, CNN [7] has substantially 

contributed to the image processing task due to its 

astounding ability to extract useful feature maps “Fig. 1” [8] 

and information for performing classification [9] and object 

detection [10]. 

 

Fig. 1 Feature maps appearance depend on layer of  

CNN [11] 

Many researchers commonly use deep learning to train 

deep CNN for performing multiple tasks to ease applications 

in both industry and academia. An example would be using 

a cascaded CNN to detect traffic signs for transportation 

purpose [12]. Beside vision recognition, CNN can be 

applied to audio signals too, such as speech recognition by 

using CNN to detect the emotional sentiments within 

conversations between human [13]. 

For image classification and object detection, these 

models are usually trained solely based on raw RGB images 

(24-bits per RGB pixel), which caused the model only 

accept raw RGB image during inference stage. Each pixel is 

required to be captured for both training and inference phase 

to be executed. This method will take substantially longer 

time to train dataset [14] [15] with larger image database or 

resolution. Most of the images on internet or in computer 

today are stored in a compressed format to save space, 

theseimages are in a „compressed domain‟ form. To conduct 

inference on these images, full decoding or decompression 

is required for obtaining raw image data, which will cost us 

extra computational power and time. 

To save computational power and improve efficiency, a 

new idea of training models such to perform inference on 

compressed domain image data has hit the research arena.  
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Recent studies and research on compressed domain 

analytics have becoming more popular [16]. The underlying 

motivation and mathematical fundamentals for compression 

algorithm is the Discrete Cosine Transformation (DCT) 

[17]. 2D DCT-II is used to convert image from spatial 

domain into frequency domain for better compression [18]. 

It reduces the spatial redundancy within raw image data to 

achieve higher amount of compression. Several processes 

such as quantization and entropy encoding comes after 2D 

forward DCT to pack the image data into its highest possible 

compression state. 

In this paper, we presented some experimental setup that 

analyzed the performance difference for inferencing image 

on devices powered by Intel x86 CPU architecture under 

spatial domain (RGB) and compressed domain (DCT). The 

methodology presented here contains minor modifications 

from the conventional JPEG compression standards [19][20] 

with several simplifications. The main contributions of this 

paper covered the following ideas: 

Accelerate inference speed by performing classification 

on compressed domain images using OpenVINO inference 

engine. 

Optimize simple RGB and DCT classification models by 

converting them into Open VINO Intermediate 

Representation (IR) format to run optimally on Intelx86 

CPU architecture. 

Leverage compressed domain image data to perform 

inference on normal CPU instead of Field-Programmable 

Gate Array (FPGA) or Graphic Processing Unit (GPU). 

The remaining of this paper will be structured into four 

main sections; whereby section II will cover the standard 

JPEG compression CODEC, some recent compressed 

domain neural networks and hardware acceleration 

implementations. Section III will establish the methodology 

and major pipelines of our work while section IV will 

provide discussion for analyzing the results and 

performances of our work. 

II. RELATED WORK 

A. Fundamentals of Image Compression  

Digital media such as image and video on internet tend to 

grow tremendously over the years. With more and more data 

required to be stored rapidly, methods of compressing 

digital media acquire essential priority for efficient storage.  

Image compressions pursue to encode the original raw 

image with lesser bits [21]. It is used to diminish image 

redundancy such to save or transfer image data in a more 

effective way. Popular image compression algorithms such 

as the wavelet and JPEG compression are found to be 

coherent [22]. We will focus on JPEG image here as the 

experiment conducted is based on JPEG image data. 

 

 

Fig. 2 Standard JPEG image compression and decompression [22] 

The JPEG compression algorithm [19], as shown in “Fig. 

2”, is the most popular image compression standard known 

today. It started off with partitioning the image into 8x8 

Minimum Coded Unit (MCU), extra padding is applied 

towards the image edge if the image size is not multiplies of 

8. Next, color conversion from RGB domain into the YCbCr 

domain is applied throughout the image for every single 

pixel. The image will appear to be more compact in YCbCr 

color space representation. Down sampling sometimes is 

applied towards the Chrominance channels (CB and Cr) for 

a more compact format. “Fig. 3” below portrayed the 

individual channels of YCbCr after converted from RGB 

image. The image used is „Lena‟ of size 512x512 [23]. 
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Fig. 3 Image in YCbCr domain for each channels 

The upcoming phase includes the most vital process along 

the compression pipeline which converts the pixel 

information from spatial to frequency domain. This is done 

by applying 2D DCT-II [17] towards each of the 8x8 MCU 

block. 2D DCT-II treats the image as a spatial 2D signal. It 

takes the advantage of human vision drop-off threshold at 

higher frequencies by eliminating redundant spatial image 

information in each MCU blocks. The equation for 2D 

DCT-II (1) is featured as below with MCU block size of 8. 

 

 

 

Fig. 4 DC coefficients of DCT image in YCbCr domain 

After performing 2D DCT-II towards each of the MCU 

blocks, each block will result in 64 frequency domain data 

whereby the most top left data represent the DC coefficient 

while the remaining 63 data are the AC coefficients. By 

disregard all the 63 AC coefficients and acquire all the DC 

coefficient only, we will reduce the original Lena image size 

from 512x512 to 64x64 (h/8, w/8). “Fig. 4” shows that the 

DC components of each MCU blocks are sufficient to 

represent the image detail for the same Lena image.  

The subsequent process will further remove higher 

frequency components within the MCU block by quantizing 

each of the 8x8 partitions. Quantization matrix of the same 

size as MCU blocks will be applied towards each MCU. The 

quantization matrix from quantization tables can be tuned 

accordingly to trade-off between image quality and 

compression rate. Standard quantization tables are usually 

used for simplification and standardization.  

The final stage of image compression consists of zigzag 

encoding and Huffman encoding, which usually summarized 

as entropy encoding. The zigzag encoding will convert 2D 

quantized image into 1D array following a special sequential 

pattern applied to each of the MCU blocks. Huffman 

encoding [24] further encode each of the MCU blocks into 

special bytes by referring to their frequency of presence 

within the image. Data which is often occurring within the 

image will be encoded with fewer bits and vice versa. It 

takes certain amount of time to compute the respective 

Huffman binary tree which is required to generate the 

relative Huffman Table so sometimes standardized Huffman 

Tables are used so save time in image compression.  

Finally, encoded binary strings are converted and saved as 

bytes with ‘.jpg’ file extension. It includes all the format of a 

standard JFIF file with special headers and markers [25]. 

The additional JFIF annotations are handled by specific 

library such as the ‘libjpeg’ [26]. For decompression of 

JPEG images, it will be exactly the reverse method of 

compression pipeline following the sequence as shown in 

“Fig. 2”.  

The issues with encoding and decoding compressed 

images are time consuming and power inefficient. For the 

purpose of better storage and transfer rate, image 

compression is effective. But for usage in deep learning 

tasks, we hope to eliminate, or minimize the portion of 

image compression procedures, and try to use the 

information in between image encoding and decoding for 

classification or object detection. 
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B. Compressed Domain in Neural Networks  

Over the past few years, popular deep neural networks 

such as VGG-Net [27], Squeeze-Net [28] and Res-Net [29] 

have celebrated huge implementation for its overwhelming 

achievement in image classification. Visual Geometry 

Group(VGG) kick-started by going deeper in convolution 

with using very small filter size configurations. The authors 

in [27] came out with several deep network designs with 

distinctive blocks of convolution depth to enhance the 

model performance. With up to millions of trainable 

parameters and large model size, the drawback is that the 

model will take a long time to train and only be able to use 

on higher end computer system. Besides, with deeper layers 

of convolutional blocks, the respective training and testing 

error will be higher. Deep residual learning established 

„Residual Network‟ (Res-Net) [29] by computing a residual 

functions with reference towards the input layers. This novel 

method allows deep neural networks to go deeper up to 152 

layers, which is 8x deeper than VGG-Nets while achieving a 

low error of 3.57% on the Image Net [30] test set. On the 

contrary, Res-Net is also a huge model with more 

parameters which takes time to train.  

A so called „Squeeze-Net‟ [28] architecture was modified 

from Alex-Net [31] with lesser parameters and smaller 

model size. It is easier to train and deploy towards end user. 

Mobile-Net [32] is also a similar small architecture which 

extends the model ability from image classification towards 

object detection. It is specially designed to fit in mobile 

devices for different applications.  

Since much of the deep neural network architectures are 

trained based on 24-bit raw image data, could we possibly 

train these models with compressed or partially decoded 

image data? As more compressed domain images are 

presented in real world situation compared with spatial 

domain images, more researches are conducted based on 

compressed domain deep learning framework to accelerate 

the deep learning process.  

Dan Fu and Gabriel Guimaraes [33] introduced a method 

of ‘DCT truncation’ into the model training pipeline. By 

applying 2D DCT-II towards a spatial domain RGB image 

and modifying the image size such to mimic the compressed 

domain image data, the pre-processed image is feed into the 

network and train as usual. Similar approach was presented 

in [34] whereby models are trained based on DCT 

coefficients of MNIST [35] and CIFAR-10 datasets. This 

method was experimented on classification task by using 

very basic CNN on compressed domain images by applying 

DCT towards raw images yield a competitive result, 

whereby partial decoding from the compressed image 

(JPEG) is only needed during the inference stage. Both of 

the methods does not consider some of the JPEG CODEC 

procedures, in essence the Chroma down-sampling and 

quantization.  

The author in [36] demonstrated using stacked DCT based 

sparse auto-encoders architecture for designing the model. 

The tradeoff point is taken between number of DCT 

coefficients selected, accuracy and training time. By 

performing experiment on the MNIST [35] datasets, the 

training time for DCT domain is 4 times faster than the 

spatial domain. Another paper [37] trained CNN (modified 

ResNet-50) straight from the block-wise DCT coefficients 

available during the image compression stage and achieve 

similar accuracy with a speed of 1.77x faster than the 

original model. Similar papers [38] [39] also exhibit 

different approaches for handling compressed domain 

images straight from CNN.  

We came across lots of methods and models featuring 

deep learning in compressed domain, but mostly contains 

simplified or modified JPEG compression standard. 

C. Implementation on Hardware Acceleration  

Some of the recent works also focused on utilizing 

hardware accelerator such as Field-Programmable Gate 

Array (FPGA) and Graphic Processing Unit (GPU) to run 

machine learning algorithms. Zhao et. al [40] presented an 

FPGA architecture design based on CNN and Support 

Vector Machine (SVM) algorithms. The hardware design 

workflow is well suitable to run on the above two 

algorithms as well as other models. Similar work have been 

done in [41] to design CNN accelerator. Ardestaniet. al [42] 

showed by using hardware units on site computing with 

ISAAC and Newton architecture, it can perform better than 

digital accelerators. FPGA based accelerator is cheap when 

comparing with GPU, whereby FPGA is also power 

efficient and flexible in design.  

As edge inferencing [43] is as important as model 

training, research has also fond to reduce the latency of 

inference time locally rather than connecting the edge 

devices towards the cloud server for inferencing. To enable 

model to run efficiently on the edge device such as an 

embedded device, model compression [44] is used to reduce 

model size and complexity. Vanhouckeet. al [45] 

demonstrated some methods to cut down computational 

power of neural networks inference on x86 architecture 

CPU.  

FPGA is hard to design and implement, without specific 

knowledge, we were unable to get the most out of it. GPUs 

are expensive and power intensive equipment. It may 

provide us higher performance, but some edge devices will 

be unable to support GPU. Since FPGA and GPU are out of 

the choices, it left us with CPU whereas it exists in most of 

the computer system devices today! 

III. METHODOLOGY  

The objective of conducting this experiment is to make 

use of compressed domain techniques in image compression 

to improve the performance of image classification on CPU 

without the use of GPUs or FPGAs. Our method, namely 

„Partial Decoding of JPEG Images‟ is to obtain nominal 

DCT coefficients from encoded image streams to perform 

classification. The whole pipeline will cover the following 

procedures:  

 Import trained models (under both RGB and DCT 

domain).  

 Read in images from specific directory or webcam to 

obtain encoded JPEG images stream.  

 Partial decoding of JPEG compressed image streams to 

obtain „Nominal DCT coefficients‟.  
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 Standardization of „Nominal DCT coefficients‟.  

 Feed the DCT coefficients into a trained DCT CNN 

model converted into OpenVINO IR format.  

 Perform inference utilizing OpenVINO inference 

engine.  

The difference between this method with the conventional 

one is that this method does not require JPEG image full 

decoding to obtain the spatial domain information (RGB) of 

image for inference. This is because the „Nominal DCT 

coefficients‟ from JPEG image is sufficient to provide 

useful information for the neural network to recognize 

specific patterns or feature maps. Without the need of 

decompressingthe whole image, inference speed of 

classification is expected to increase when comparing with 

spatial domain (RGB) images.  

Two different pipelines are shown in “Fig. 5” as below are 

being tested and explored in this paper. 

 

Fig. 5 RGB and DCT inferencing using different 

pipelines 

In our experiment, we use „OpenCV2‟ library to perform 

full decoding towards the JPEG compressed images and 

obtain the RGB pixel data for inference. While for the DCT 

path, we were using a module name ‘jpeg2dct’ from the 

paper [37] to obtain our DCT coefficients. The RGB pixel 

and DCT coefficients are then feed towards their respective 

CNN model for inference and the consecutive classification 

results are computed.  

Initially, the dataset is collected and pre-processed to train 

the aforementioned two models on a computer system and 

deployed as OpenVINO Intermediate Representation (IR) 

format. The models will be exported from the computer to 

serve as a more optimized model for inference later.  

A. CNN Model Architecture for different domains  

Two simple CNN models that will be used for 

classification in our experiment is established in Table I and 

Table II as below. These models are adapted and modified 

from the paper [34]. Simple CNN models are used as the 

datasets in the experiment later does not require thick 

convolution layers. The input layer of the RGB model is 

constructed from a simple CNN layer with default size of 

224x224 while the DCT model contained customized input 

channels to fit the DCT coefficients of different down 

sampling ratio. 

Table. I RGB CNN Model 

Layer Name Kernel Type [f, s] Output Size 

Conv_2D_1 [3x3, 1x1] 224x224, 16 

MaxPooling_2D_1 [3x3, 2x2] 112x112, 16 

Dropout_1 p = 0.25 112x112, 16 

Conv_2D_2 [3x3, 1x1] 112x112, 32 

MaxPooling_2D_2 [3x3, 2x2] 56x56, 32 

Dropout_2 p = 0.25 56x56, 32 

Conv_2D_3 [3x3, 1x1] 56x56, 64 

MaxPooling_2D_3 [3x3, 2x2] 28x28, 64 

Dropout_3 p = 0.25 28x28, 64 

Conv_2D_4 [3x3, 1x1] 28x28, 128 

MaxPooling_2D_4 [3x3, 2x2] 14x14, 128 

Dropout_4 P=0.25 14x14, 128 

Flatten - 1, 25088 

Dropout_5 p = 0.50 - 

Softmax - 1, class_number 

Table. II DCT CNN Model 

Layer Name  Kernel Type [f, s]  Output Size  Inherited From  

DCT_Cb (Input)  -  14x14, 64  -  

DCT_Cr (Input)  -  14x14, 64  -  

DCT_Y (Input)  -  28x28, 64  -  

UpSampling2D_cb  [2x2, 2x2]  28x28, 64  DCT_Cb 

UpSampling2D_cr  [2x2, 2x2]  28x28, 64  DCT_Cr 

Concat2D  -  28x28, 192  DCT_Y, UpSampling2D_cb 

UpSampling2D_cr  
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Conv2D_1a  [3x3, 1x1]  28x28, 32  Concat2D  

Conv2D_1b  [3x3, 1x1]  28x28, 32  Conv2D_1a  

MaxPooling2D_1  [2x2, 2x2]  14x14, 32  Conv2D_1b  

Dropout_1  P=0.35  14x14, 32  MaxPooling2D_1  

Conv2D_2a  [3x3, 1x1]  14x14, 64  Dropout_1  

Conv2D_2b  [3x3, 1x1]  14x14, 64  Conv2D_2a  

MaxPooling2D_2  [2x2, 2x2]  7x7, 64  Conv2D_2b  

Dropout_2  P=0.5  7x7, 64  MaxPooling2D_2  

Flatten  -  1, 3136  Dropout_2  

Softmax -  1, class_number Flatten  

 

The difference between the two models above as shown in 

Table I and Table II is that the RGB model contains four 

CNN blocks (1x Convolution, 1x Max-Pooling, 1x Dropout) 

while the DCT model only have two CNN blocks (2x 

Convolution, 1x Max-Pooling, 1x Dropout). The individual 

mentioned blocks for RGB and DCT models are extracted 

and shown in “Fig. 6” below for better clarity. The character 

‘f’ stands for convolution filter sliding window size, while 

‘s’represents the stride. 

 

Fig. 6 RGB CNN block (left); DCT CNN block (right) 

We design the DCT model to contain two convolution 

layers in each block, whereby the RGB model only contain 

one convolution layer in each block. The reason is because 

DCT domain image contain 64 coefficients of three 

channels resulting in 192 image data-like array in depth after 

concatenating. With only one layer of convolution will not 

be enough to acquire essential feature maps. Therefore two 

convolution layers were used in DCT model. The design of 

number of layers for DCT model is also by experimenting 

number of neurons and the respective inference speed.  

Number of parameters, training time and accuracy of the 

aforementioned models will be evaluated in the subsequent 

section. Trained models will be initially saved as Tensor 

flow standard proto-buff (.pb) format and later exported into 

OpenVINO IR format, with the following settings listed as 

below: 

Table. III Model Conversion Settings 

Conversion 

Setup  

DCT Model  RGB Model  

Scaling  512.0  255.0  

Batch Size  1  1  

Data Type  FP32  FP32  

Reverse Input 

Channels  

True  True  

From Table III above, only the scaling setup is different 

while the other settings remain the same. Explanation for 

different scale value towards both models will be covered in 

the subsequent section. Batch size is set to 1 such that the  

model only takes in single image at a time for inferencing. 

Data type of FP32 stands for 32-bits floating point precision 

standard. While parsing „True‟ value towards the reverse 

input channels, the input will be altered from „height x width 

x channels‟ (H x W x C) into „channels x width x height‟ (C 

x W x H). 

B. Dataset Preparation  

To assess the performance of our methods, three datasets 

are used in our experiment, i.e. Malaria [46], Pneumonia 

[47] and Natural Images [48]. These three datasets were 

obtained from official Kaggle website. Malaria is a 

hazardous symptom transmitted by Anopheles mosquito. It 

usually parasites in the red blood cells in the human body 

and replicate in a very short time span, causing the cell to 

explode. Pneumonia is the human lung infection caused by 

virus or bacteria. Therefore it is equally important to 

perform classification task on these datasets for detection 

such an early cure can be carried out.  

Malaria and pneumonia dataset consisted of 2 classes 

while Natural Images dataset consisted of 8 classes 

(airplane, car, cat, dog, flower, fruits, bike, and person). 

These dataset were split into training, validation and testing 

by a ratio of 7:2:1. Number of images per class after 

splitting are shown in Table IV below in brief. 

Table. IV Number of Images per Class after Splitting 

Dataset Training 

Images 

Validation 

Images 

Testing 

Images 

Malaria 2800 800 400 

Pneumonia 1050 300 150 

Natural 

Images 

490 140 70 

 

After the dataset is downloaded, a series of pre-processing 

algorithm is applied towards all the images. Image 

augmentation is not carried out for simplicity. Our main 

concern is able to perform inference on compressed domain 

images, more intuitively the standard JPEG image. Hence, 

we only conduct a few initial steps following the partial 

decoding, without applying pruning. 
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Fig. 7 Comparison between partial and full decoding of JPEG image 

From “Fig. 7” as illustrated above, we can clearly 

differentiate between full and partial decoding using 

different Python module to obtain the final image data 

required for training or inferencing. For an RGB original 

image shape of 224x224x3, the three DCT coefficients 

(include one Luminance channel and two Chrominance 

channels) obtained will be [28x28x64], [14x14x64], 

[14x14x64] respectively. The compressed image is 

subjected to a down sampling ratio of 4:2:0.  

After we obtain the above three channels of DCT 

coefficients, the data range is in between -1024 to +1024. 

Standardization is applied towards the dataset by dividing 

the DCT image array by 512. This narrows the dataset range 

into -2 to +2. Normalization is found to produce worse result 

compared with standardization as the accuracy is lower. 

Besides, with wider range of sample available, details of the 

coefficients can be captured by the network more easily to 

create related feature maps.  

For RGB domain data, the original range of 0 to +255 is 

normalized by dividing 255 to position the range in between 

0 to +1. After pre-processing of DCT and RGB domain data, 

they are saved into Python Numpy array under different 

directory. 

IV. EXPERIMENTAL RESULT AND DISCUSSION 

A. Experimental setup  

We have a system running on a CPU of Intel Core i7-

8750H, 6 cores with frequency of 2.2GHz to 4.1GHz. The 

RAM is 64GB with 500GB of Solid-State Drive. The 

experiment is built on top of Ubuntu 16.04LTS with 

OpenVINO 2019 R2 version. The computing language of 

the whole experiment is based on Python script. Therefore 

theresults in this experiment shall not be compared with 

other experiments with different computing language 

domain as discrepancies may present. Keras (version 2.2.4-

tf) of Tensor flow framework (version 1.13.1) is used for 

creating our CNN models and evaluate its performance.  

On any system or computer powered by Intel CPU 

whereby OpenVINO inference engine can support, the IR 

models can be deployed onto that system with ease. 

Encoded images stream in either real time provided by M-

JPEG webcam or pre-saved images can be loaded from 

storage for inference. In our experiment, we setup a 

directory to contain testing JPEG images and do prediction 

based on them. 

B. Evaluation on inference time 

 

Fig. 8 Inference time track 

The inferencing experiment is done with looping through 

all testing images saved in inference directory. Inference 

process includes loading the OpenVINO IR model, loading 

image to perform partial or full decoding with accordance 

towards the domain and finally perform prediction (refer to 

Fig. 5). The inference time is calculated based on loading 

image, decoding image and finally feeding the image into 

the model for inference. Procedures where time is tracked 

are shown in “Fig. 8” below for clarity.  

To show the practical inference process, Open CV Python 

library is used to display the inferred image on two separate 

frames comparing RGB and DCT domain inferencing. 

Respective inference result, image decoding FPS and total 

inferencing FPS will be shown on the screen. For demo 

purpose, each image is delayed for around 0.1 second. The 

actual test for benchmarking the inference FPS later will not 

contain any delay. 
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Fig. 9 Malaria inferencing (left – RGB, right – DCT) 

 

Fig. 10 Natural images inferencing (left – RGB, right – 

DCT) 

 

Fig. 11 Pneumonia inferencing (left – RGB, right – DCT) 

The inference process is run on OpenVINO inference 

engine and some performance comparison is done between 

full decoding (OpenCV2) and partial decoding (jpeg2dct). 

The performance of frame rate (Frame Per Second, FPS) as 

recorded below are compiled based on an average taken out 

of 5 runs of the whole inference process. The inference time 

tracked for single image is from loading the image until 

feeding the image into the executable OpenVINO IR model. 

Each image will be iterated 1000 times to get the average 

frame rate. All images have a standard size of 224x224x3. 

 

Fig. 12 Inference speed comparison between RGB and 

DCT domain 

Table V. Model Conversion Settings 

Dataset  Inference Speed Improvement  

Pneumonia  1.95x  

Malaria  1.98x  

Natural Images  2.06x  

From Table V above, we can clearly see that the inference 

speed (FPS) for partial decoding is higher than full 

decoding. The inference frame rate of compressed domain 

images is about two times greater than the spatial domain 

images. In other words, this means that more computational 

power is saved in return for 100% faster in inference speed. 

The inference speed (FPS) difference between “Fig. 12” and 

the figures shown above (Fig. 9, Fig. 10, Fig. 11) is the use 

of slight delay during the display for us to visualize the 

detected inference result. 

C. CNN model properties and performances  

In this section, we will discuss about the performances of 

the CNN models and assess their difference based on 

varying input domain of dataset – spatial domain (RGB) and 

compressed domain (DCT). Table VI below summarized the 

performance of the two models based on different datasets 

of different domain. 

Table VI. CNN Model Performance 

Model  RGB CNN 

Model  

DCT CNN 

Model  

Pneumonia  

Validation Accuracy 

(%)  

95.57  97.47  

Testing Accuracy 

(%)  

95.25  93.67  

Trainable 

Parameters (mil)  

0.15  0.13  

Malaria  

Validation Accuracy 

(%)  

94.56  94.38  

Testing Accuracy 

(%)  

93.00  90.25  

Trainable 

Parameters (mil)  

0.15  0.13  

Natural Images  

Validation Accuracy 

(%)  

90.45  91.07  

Testing Accuracy 

(%)  

90.00  89.82  

Trainable 

Parameters (mil)  

0.3  0.15  

 

From Table VI above, the testing accuracy difference 

between spatial and compressed domain is within 5%. 

Compressed domain models exhibit similar or higher 

validation and testing accuracy compared with spatial 

domain. The minor difference between model trainable 

parameters of RGB and DCT CNN models shall not affect 

the inference speed and model accuracy as the effect is 

minimal. 
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V. CONCLUSION AND FURTHER WORK 

Along the experiment presented above, we can clearly 

visualize the application pipeline along the whole IoT 

industry from capturing input of image streams towards 

obtaining the classification result. With our method of 

training the neural networks in the compressed domain and 

inferencing done on partially decompressed image, we 

achieve averagely two times faster in inference speed when 

comparing with the RGB data retrieved from compressed 

domain images. 

The benefits of performing classification on compressed 

domain images include saving time and computational 

power yet provide a faster inference speed towards real time 

application. It also improve the CPU inference speed by 

solving hardware deficiency using software tweaks. The 

only drawback of having this task done on compressed 

domain (DCT) is sometimes lower accuracy is obtained 

compared with spatial domain (RGB). The accuracy of the 

model is actually depends on the chosen model and dataset 

variations. With the continuous advancement of technology 

and design of new neural network architectures, we believe 

that the accuracy of such task is not a critical issue from 

time to time. The accuracy can be improved by feeding the 

network with more dataset and conduct image augmentation 

for acquiring a more robust network.  

In a nutshell, analytics and network models of compressed 

domain are such an essential contribution towards a smarter 

computational intelligence for our digital world tomorrow. 
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