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Abstract: Air quality status on the East Coast of Peninsular Malaysia is dominated by Particulate
Matter (PM10) throughout the years. Studies have affirmed that PM10 influence human health and
the environment. Therefore, precise forecasting algorithms are urgently needed to determine the
PM10 status for mitigation plan and early warning purposes. This study investigates the forecasting
performance of a linear (Multiple Linear Regression) and two non-linear models (Multi-Layer
Perceptron and Radial Basis Function) utilizing meteorological and gaseous pollutants variables as
input parameters from the year 2000–2014 at four sites with different surrounding activities of urban,
sub-urban and rural areas. Non-linear model (Radial Basis Function) outperforms the linear model
with the error reduced by 78.9% (urban), 32.1% (sub-urban) and 39.8% (rural). Association between
PM10 and its contributing factors are complex and non-linear in nature, best captured by an Artificial
Neural Network, which generates more accurate PM10 compared to the linear model. The results
are robust enough for precise next day forecasting of PM10 concentration on the East Coast of
Peninsular Malaysia.
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1. Introduction

Air quality in a developing country such as Malaysia has decreased gradually because of rapid
urbanization, industrialization and population growth [1]. Southeast Asia cities, including Malaysia
are notified as surrounded by particulate matter (PM10) in air quality problems [2–5]. PM10 or known
as coarse particle is defined as the particulate matter that having an aerodynamic diameter of less than
(≤) 10 µm [6]. PM10 had received special attention especially in Peninsular Malaysia, as it was proven
to have the highest index through the Air Pollutant Index (API) compared to other criteria pollutants
annually. Moreover, the status of API in the East Coast of Peninsular Malaysia was noted as having
a good to moderate level, where only a few days were recorded to have unhealthy levels of PM10

concentration during the dry season months (May to September) [3]. The main sources of PM10 in
Malaysia are emissions from the motor vehicles, heat and power plants, industries and open combustion.
High concentrations of PM in the atmosphere (for instance African dust) happen when there exists a
low amount of rainfall combined with high temperatures, which prompts the re-suspension of dust.
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Arid areas such as the Sahara contribute to natural mineral dust. Anthropogenic activities associated
with various gaseous and particulate emissions can be determined by air quality temporal and spatial
variations in a region. Engine combustion (diesel and petrol), industrial, mining, building, cement,
agriculture and many more are examples of an anthropogenic source of particulate matter emission.
Motor vehicle emission occurs mostly in urban areas where population densities are much higher than
the global average. PM10 is under escalated toxicological and epidemiological examinations [7] and
has been considered in affecting human health [8], namely by causing diseases such as respiratory
illness [9] and cardiovascular diseases [10]. World Health Organization (WHO) additionally utilized
PM10 as a marker of air contamination introduction as it is noteworthy as an environmental hazard
component worldwide [11]. Considering the proven adverse health effects especially on human
health, the forecasting of PM10 in advance and the assessment of the model is important, as it allows
authorities to take control measures to ensure the health of the population and improve air quality in
specific locations.

The problem of atmospheric pollutants such as PM10 concentration is not a straightforward
issue of controlling the emission sources. The complexity of PM10 concentration in the atmosphere
relies on meteorological factors and gaseous pollutants [12] with multi-confronted qualities over
different spatial-transient scales. The meteorological factors and gaseous pollutants are ambient
temperatures, relative humidity, wind speed, wind direction, global radiation, rainfall amount,
mean sea level pressure (MSLP), sulphur dioxide (SO2), carbon monoxide (CO) and nitrogen dioxide
(NO2). Meteorological factors have a strong influence on ambient air quality through the various
mechanisms in the atmosphere, both directly and indirectly. Wind speed and wind direction are
responsible for some mechanisms of particle emission in the atmosphere, such as re-suspension of
particles and diffusion, as well as the dispersion of particles. The increase of wind speed results in
low pollutant concentration, as it dilutes the pollutant. Rain removes particulates in the atmosphere
through a “scavenging” process, and it is able to dissolve other gaseous pollutants. The frequent high
rainfall amount generally results in better air quality. Precipitation provides the information on the
removing process of pollutants in the atmosphere through wet deposition. PM10 can be scavenged
from the atmosphere by rain through two basic processes. The first is termed in-cloud scavenging by
the cloud elements and precipitation, usually called rainout or snow out. It is the result of the aerosol
serving as a cloud nucleus or undergoing capture by cloud cover water or ice particles. The second
process is termed below-cloud scavenging, usually called washout. This is a result of the removal of
the sub-cloud aerosol by the raindrops as they fall. Measuring ambient temperature strengthens air
quality assessment, air quality modeling and anticipated forecasting model. Recorded daily maximum
temperatures are linked with low wind speed, little precipitation and high daily maximum mixing
height. The temperature typically increases evaporation processes and the high relative humidity
will induce the increment of the amount of water vapor and rain that will remove the pollutants in
the atmosphere. MSLP and PM10 concentrations have a positive relationship. At the point where
the ground is controlled by a low MSLP, high MSLP air mass is counter-clockwise around the focal
point of the flow. Accordingly, an updraft is created in the focal point and the amount of wind
increases, which helps pollutants moving upwards. At that point, PM10 concentrations are getting
modest. Conversely, as the high MSLP dominates the ground, the air at the center part is reduced
and demonstrates a clockwise rotation. At that point, the weather is decent and wind speed shows an
increment. Therefore, this condition is suitable for the buildup of a thermal inversion layer. The thermal
inversion layer will prompt a stable atmospheric condition. In this way, pollutants are substantially
harder to dilute and can be found on the surrounding land surface. Subsequently, under a control of
stable condition, air pollution will increase. PM10, after it is emitted to the atmosphere, is subjected
to several meteorological factors and gaseous pollutants [13]. These factors control the arrangement,
transportation and expulsion of particulates in the atmosphere, which gets distinctly complex and
shows a non-linear character [14]. Throughout the years, various factual methodologies, such as
physically-based deterministic and statistical approaches, have been proposed to forecast the PM10



Atmosphere 2019, 10, 667 3 of 24

concentration [15–18]. In spite of their obvious valuable contributions, no earlier conclusion can be
drawn regarding the appropriate model without considering distinctive meteorological factors and
gaseous pollutants. Understanding the interaction between these factors and PM10 concentration is
useful in forecasting strategies in Malaysia.

The relationship between PM10 concentration, meteorological factors and gaseous pollutants has
been proven statistically by using several multivariate analyses, especially the development of Multiple
Linear Regression (MLR) models to forecast PM10 concentration [19–21]. Unfortunately, MLR relies on
several assumptions, such as that the independent variables are linearly independent (multi-collinearity),
that there is homogeneity of variance (homoscedasticity) and that the variables are normally
distributed [22–24]. However, in a real world situation, the PM10 concentration data that is measured
in terms of temporal variation does not demonstrate linear characteristics, and therefore, are hard to
examine and forecast accurately. The development of traditional modeling techniques such as MLR
in nonlinear situation is proven to give less accuracy in forecasting [25]. Thus, for the purpose of
exploration of real data PM10 concentration temporal data, it seems crucial that non-linear models;
for instance, Artificial Neural Networks (ANN) were developed for more accurate and precise PM10

concentration forecasting [26]. Furthermore, ANN quickly processes the information with no particular
presumptions of the way of the non-linearity [27]. Therefore, the development of ANN models in
forecasting PM10 concentration is important as ANN models can capture the complexity and non-linear
character of PM10 in the atmosphere under the influence of meteorological and gaseous pollutants.

Undeniably, various studies have been performed on PM10 forecasting, worldwide and in
Malaysia. However, this effort has less been reported especially in the eastern part of Peninsular
Malaysia, rather than the western part of Peninsular Malaysia. The increment of year by year of
industrialization, urbanization and population on the East Coast of Peninsular Malaysia is believed
to reduce the air quality and affect human health [28]. Hence, it is advantageous to develop three
forecasting algorithm techniques, which comprise linear and non-linear algorithms. In the real world
situation, an area is distinctly differentiated through land use type, and therefore, different land use
that is known as the majority notified in the East Coast of Peninsular Malaysia composed of the
urban, suburban and rural areas which representing the cities of Kuala Terengganu and Kota Bharu,
Kuantan, and Jerantut, respectively, were selected as the field of interest. Moreover, no comprehensive
modeling study has been undertaken that attempts to research the variation of PM10 concentration
caused by different meteorological factors and gaseous pollutants in the East Coast of Peninsular
Malaysia. The combination of this knowledge is important in building significant PM10 forecasting
tools for beneficial information in air quality management. In this study, the predictive ability of
the linear model, for instance the Multiple Linear Regression (MLR), and that of non-linear models
approaches, such as the Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF), for PM10

concentration forecasting were investigated at the study areas. These models were critically assessed
through performance indicators keeping in mind the end goal to choose the best-fitted model for each
study areas for accurate forecasting.

2. Materials and Methods

2.1. Study Area

This research was performed in the East Coast of Peninsular Malaysia, which covers the states of
Pahang, Terengganu and Kelantan. Two urban sites were selected in this research, located at Kuala
Terengganu, Terengganu and Kota Bharu, Kelantan. One sub-urban site was located at Kuantan,
Pahang and one rural site was located at Jerantut, Pahang. Two urban areas were selected in this study
due to their future rapid development as planned by the Malaysian government through the National
Physical Plan, more specifically the East Coast Economic Region (ECER). Moreover, construction of the
East Coast Rail Line (ECRL) will transform several areas to urban areas. Furthermore, the complexity
of urban areas is another reason for the selection of two urban areas for better validating and testing
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the robustness of models being developed. The study areas are depicted in Figure 1. The details
information in terms of station ID, the location of the air quality monitoring station, the classification
or land use, as well as longitude and latitude of each selected air quality monitoring stations, is stated
in Table 1.
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Table 1. Selected air quality monitoring stations in East Coast of Peninsular Malaysia.

Site Station ID Location Classification Latitude,
Longitude

S1 CA0034 Chabang Tiga Primary School, Kuala Terengganu Urban 5◦18.455′ N
103◦07.213′ E

S2 CA0022 Tanjong Chat Secondary School, Kota Bharu, Kelantan Urban 6◦08.443′ N
102◦14.955′ E

S3 CA0014 Indera Mahkota Primary School, Kuantan, Pahang Sub-Urban 3◦49.138′ N
103◦ 17.817′ E

S4 CA0007 Batu Embun Meteorological Station, Jerantut, Pahang Rural 3◦58.238′ N
102◦20.863′ E

2.2. Data Acquisition

The secondary data has a 15-year time span, from 1 January 2000 to 31 December 2014. This long
term historical data was needed, as it can represent the variation of pollutants comprehensively [29].
The PM10 data used in this research was recorded as a major aspect of a Malaysian Continuous Air
Quality Monitoring (CAQM) program, using the β-ray attenuation mass monitor (BAM-1020), as made
by Met One Instruments Inc. The instrument basically is built-in with a cyclone and PM10 head particle
trap, fiberglass tape, flow control and a data logger. This instrument delivers a fairly high resolution of
0.1 µg/m3 at a 16.7 L/min flow rate, with lower detection limits of 4.8 µg/m3 and 1.0 µg/m3 for 1h and
24 h, respectively [30]. The installation, operation and maintenance of Air Quality Monitoring Stations
(AQMS) are performed by Alam Sekitar Malaysia Sdn. Bhd (ASMA) on behalf of the Malaysian
Department of Environment [31].
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The forecasting of PM10 concentration in this study is on a daily basis [32]. In order to gain a better
understanding of PM10 concentration, 10 daily averaged parameters were taken into consideration.
This study used a daily average of particulate matter with an aerodynamic diameter less than 10 µm
(PM10, µg m−3), ambient temperature (AT, ◦C), relative humidity (RH, %), wind speed (WS, m s−1),
global radiation (GR, MJ m−2), Mean Sea Level Pressure (MSLP, hPa), rainfall amount (RA, millimeter),
carbon monoxide (CO, ppm), nitrogen dioxide (NO2, ppm) and sulphur dioxide (SO2, ppm). The data
were acquired from the Air Quality Division, Department of Environment (DOE), Ministry of Natural
Resources and Environment of Malaysia, as well as from the Malaysian Meteorological Department
(MMD), Ministry of Energy, Science, Technology, Environment and Climate Change. The reliability
of data from DOE has consistently assured through quality assurance and quality control [33].
Moreover, the procedures used to follow the standard drawn by United States of Environmental
Protection Agency (USEPA) [30].

The data were divided into two sets; 70% (N = 3835) for the development of the linear model
(Multiple Linear Regression (MLR)). In the case of non-linear models, the Multi-Layer Perceptron
(MLP) and the Radial Basis Function (RBF) were used, and the remaining 30% (N = 1644) for model
validation [34,35]. The separation of this data is important in ANN as a method of early stopping.
This early stopping technique is important, as it avoids any underfitting and overfitting of an ANN
network [36] and allows the network to stop training the model itself when the verification errors
starts to increase when compared to the training error. The lowest squared error on the verification is
supposed to have the best generalization ability [37]. During the training of ANN models, the stopping
criteria are the number of epochs and the decrease in the training error [38]. The model validation for
the linear model, in the case for non-linear models, known as model testing, is aimed at measuring the
agreement of the models, generalizing with an independent data set [39].

2.3. Imputation of Missing Values

Data in the dataset might missing due to the instruments problem, weather, maintenance and
changing of siting monitor. This can introduce errors while developing the prediction model.
Missing data in terms of percentage (%) were calculated by dividing the numbers of missing data
and numbers of total data; then, data were multiplied with 100%. Linear interpolation technique
was applied in the imputation of missing values, as the missing percentage was less than 25%.
Linear interpolation imputed the missing values using the mean value of the last and first available
data in the dataset in SPSS® version 23 [40]. The formulation is given as:

f (x) = f (x0) +
f (x1) − f (x0)

x1 − x0
× (x− x0) (1)

where x = independent value, x1 and x0 = known values of the independent variable and f (x) = value
of dependent variable for a value of the independent variable.

2.4. Data Normalization

Units of measurement for the variables are different; thus, data normalization is needed.
Min-max technique of data normalization is adapted in this study which in the end, the values
are between 0 and 1 [0, 1] [41,42] for an accurate predictive model [43]. The technique is based on the
following [44]:

zi =
xi −min(x)

max(x) −min(x)
(2)

where x = (x1, . . . , xn) and zi is the ith normalized data.
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2.5. Multiple Linear Regression (MLR)

The regression analysis is most frequently used for forecasting. The objective is to build up
a mathematical model that can be utilized to forecast the dependent variable based on the inputs
of independent variables [45,46]. The coefficient of determination (R2) is a marker to decide if the
information gives adequate proof to show that the general models contribute to the overall variance in
data. In the MLR model, the error term signified by ε is thought to be regularly disseminated with the
mean 0 and change σ2 (which is constant). Similarly, ε is thought to be uncorrelated. In this research,
it was accepted that the MLR model has k independent variables and that there are n observations. In
this way, the regression model can be composed as [47]:

Yi = βo + β1x1i + · · ·+ βkxki + εi with i = 1, . . . , n (3)

where bi is the regression coefficients, xi is independent variables and ε is a stochastic error associated
with the regression.

Collinearity occurs when two model covariates have a linear relationship. This makes the
individual contribution of each variable difficult to discern, introduces redundancy and makes the
model excessively sensitive to the data. The multi-collinearity assumption was verified by Variance of
Inflation Factor (VIF) accompanied with the regression output, where as long as the VIF is under 10 the
conducted regression should be fine, where there is no multi-collinearity between the independent
variables [24]. The VIF is given by:

VIFI =
1

1−R2
i

(4)

where VIFi is the variance inflation factor related with the ith predictor and R2
i is the multiple coefficients

of determination in a regression of the ith predictor on all other predictors.
By performing the Durbin-Watson (D-W) Test, autocorrelation can be recognized.

Autocorrelation basically uncovers the capability of PM10 concentration of current day to estimate the
following day of PM10 concentration. The test values can change in the vicinity of 0 and 4 with an
estimation of 2 implying that the lingering is uncorrelated [19]. The D-W is given by:

D−W =

∑n
i=1(ei − ei−1)

2∑n
i=1 e2

i

(5)

where n is number of data and ei = yi − yi (yi = observed data and yi is the forecasted data).

2.6. Multi-Layer Perceptron

MLP models consist of several types, but the most commonly used in air pollution forecasting is
the Feed Forward topologies of Multi-Layer Perceptron (MLP) as shown in Figure 2 [37,48,49].

The MLP starts when the interested input parameters are fed into the network. These input
parameters provide input signals and these signals are sent to the network starting from the input
layer to the hidden layer and from the hidden layer to the output layer. The scaled input vector,
which introduces neurons to the input layer, is multiplied by weights, which is a real number quantity.
The neuron in the hidden layer sums up this information, including bias.

yo =
n∑

i=1

wixi + b (6)
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This weighted sum information is still in its linear model. The non-linearity of information or
model occurs when it is passing through the activation or transfer function.

f (x) =
1

1 + e−x (7)

Then:

yo = f

 n∑
i=1

wixi + b

 (8)

where yo is the output, Wi is weight vector, Xi is the scaled input vector, b is the bias, f is the transfer
function and x represents the total sum of weighted inputs.
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Once the error signal is computed, the process of model fitting ends. The difference between
target and output is used to compute the error signal in the model, which corresponds to the input [50].
Mathematically, the equation of MLP with several numbers of neurons is given as:

yo = f

∑ WOkj (
n∑

i=1

WIi jxi + b1) + b2

 (9)

where WIi j and WOkj are the weights of input and output layers, respectively, and b1 and b2 are biased
in the input and output layer, respectively. The determination of various neurons in the hidden layer is
an exceptionally basic assessment and is known to be user-specified [51]. Furthermore, the excessive
number of neurons in the hidden layer may bring about underfitting or overfitting, which builds the
noteworthy blunders of the created models [34]. This situation may happen amid the training stage.
The number of neurons in the hidden layer is found by the trial and error approach, which starts with
one neuron and progressively includes more neurons one by one [36,52]. Keeping in mind the end
goal to decide the optimum number of neurons in the hidden layer in the most targeted way, this trial
and error method was rehashed 10 times at arbitrarily appointed picked data points [43], and the
optimum number of neurons was selected in view of the least performance error (average of all trials)
as measured by Root Mean Square Error (RMSE) [41,52] and R2 values [52].

There are no standard rules on the minimum and maximum number of neurons in the hidden
layer [53]; however, the scope of an optimum number of neurons in the hidden layer has been
recommended by a few researchers. The proper number of neurons in hidden layer ranges from
2
√

M + N to 2M + 1; M is the number of input and N is the number of output node [54]. The diverse
number of neurons were tried in MLP models by utilizing M

2 − 2 up to M
2 + 2, where M is the number of

input variables [55]. It was recommended that the number of neurons in the hidden layer as M + 1 [56],
and

(
2
3

)
× (M + N) [57]. Other than that, a previous study proposed and effectively demonstrated that

the number of neurons in the hidden layer is not bigger than twice the number of inputs [58].
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The activation or transfer function played an important role in ANN by producing a non-linear
decision through non-linear blends of weighted inputs. This activation function then transforms input
signals into output signals. This activation function presents the non-linearity in the MLP model,
and subsequently contrasts it from the linear model. Sigmoid units of activation functions map the
input to a value in the range of 0 to 1. This research utilizes three sigmoid functions that are generally
utilized as a part of MLP; for example, purelin (linear), log-sigmoid (logsig) and hyperbolic tangent
sigmoid (tansig) [34,52]. The tansig transfer function in the hidden layer is recommended to be utilized
by previous studies [55,59], while the logsig transfer function is proposed by [43,60] and a linear
(purelin) activation function is used in the output layer [55].

In order to train the optimum configuration of the MLP network, the learning rate was set to
0.05 [59]. This prevents the network from diverging from the target output; additionally, it enhances
the general execution. The bias is defined as 1 [34], both at the hidden layer and output layer for the
activation function (sigmoid) employment. The initialization of the MLP network was trained with
5000 epochs [37]. Therefore, considering the above-stated topology and criteria of MLP, several networks
consisting three-layered MLP were trained in order to optimize or to find the best activation function of
hidden and output layer, as well as the number of nodes or neurons in the hidden layer. The development
of MLP is generally composed of three main steps: (1) define the training sets; (2) train the MLP;
(3) apply the network to a new set of data (Testing). All implementations and computations were
performed using Matrix Laboratory (MATLAB) (MathWorks, Inc. Massachusetts USA) [61].

2.7. Radial Basis Function

MLP networks inherent several drawbacks which include slow convergence speed, network
topology specification and poor generalization performance [62]. Although several of its optimization
techniques can be employed on the network, most will result in computationally high demands,
and therefore, it is difficult to put this MLP model into practice. The RBF network was developed,
which visualizes a more effective algorithm for a faster convergence speed and good generalization
ability [63]. The architecture of RBF model is shown in Figure 3.
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RBF consists of three layers; input layer, hidden layer and output layer. In terms of training time,
RBF has a shorter training time as compared with other models [64]. Its specialty is that the hidden
layer is composed of a transfer function known as Gaussian (radial basis). These hidden neurons work
in measuring the weight distance between the input layer and output layer [65]. Two RBF parameters,
known as center and spread, are important as the first weight connecting the input layer and hidden
layer. The second weight connects the radial basis function to the output layer. The Gaussian is given
as [66]:

oj(x) = exp (−
‖x− µ j‖2

2σ2 j
), (10)
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where x represents the input, µ the center of the RBF unit and σ j is the spread of the Gaussian
basis function.

The optimum number of nodes in hidden layer depends on the behavior of training dataset.
The training process concludes the optimum number of nodes in the hidden layer. A different spread
number is used in this study [36] and the number of nodes is equivalent to the number of epochs in
for the trained model. Training error is constant at 0.001 [62], while the suitable spread is determined
through a trial and error method [42], with a scale of 0.1 from 0 to 1 [67]. The performance is based on
the lowest RMSE and highest R2 values for the best predictive model. The output layer is the linear
function for executable results. The output layer is given with [68]:

yk(x) =
M∑

j=1

Wkjφ j(X) + Wko (11)

where M = number of basis functions, x = output data vector, Wkj = weighted connection between
the basis function and output layer, φ j = nonlinear function of unit j in the RBF and Wko = weighted
connection in the output layer.

2.8. Performance Indicators

The selection of the best-fitted model, MLR, MLP or RBF at each site, was based on the performance
indexes or performance indicators. Performance Indicator (PI) measures two things: (1) accuracy
measure and (2) error measure. The accuracy measures evaluate values from 0 to 1, whereby the best
model is considered when the evaluated values are close to 1, while the best model for error measures
are selected if the evaluated value is close to 0 [69,70].

Performance indicators that were used are [29,69]:

(a) Root Mean Square Error (RMSE):

RMSE =

( 1
n− 1

)
n∑

i=1

(Pi −Oi)
2

1/2

(12)

(b) Index of Agreement (IA):

IA =


∑n

i=1(P−Oi)
2∑n

i=1 (|Pi −O|+ |Oi −O|
2

 (13)

(c) Normalized Absolute Error (NAE):

NAE =

∑n
i=1 |Pi −Oi|∑n

i=1 Oi
(14)

(d) Correlation Coefficient (R2):

R2 =


∑n

i=1

(
Pi − P

)(
Oi −O

)
n·Spred ·Sobs


2

(15)

(e) Prediction Accuracy (PA):

PA =
n∑

i=1

(
Pi − P

)(
Oi −O

)
(n− 1)SpredSobs

(16)

where n = total number measurements at a particular site, Pi = forecasted values, Oi= observed
values, P = mean of forecasted values, O = mean of observed values, Spred = standard deviation
of forecasted values and Sobs = standard deviation of the observed values.
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3. Results and Discussion

3.1. Descriptive Statistics

The descriptive statistics and boxplot showing the temporal variation of PM10 concentrations
during the study period (2000–2014) for each site are summarized in Table 2.

Table 2. Descriptive statistics (mean ± standard deviation) of air pollutants and meteorological
parameters. PM10: Particulate Matter; CO: Carbon Monoxide; SO2: Sulphur Dioxide; NO2:
Nitrogen Dioxide.

Site S1 S2 S3 S4

PM10 (µg/m3) 51.72 ± 15.09 40.74 ± 14.32 34.08 ± 12.12 37.34 ± 14.79
Wind Speed (m/s) 1.50 ± 0.42 1.49 ± 0.47 1.81 ± 0.45 1.01 ± 0.19
Temperature (◦C) 27.33 ± 1.45 27.00 ± 1.38 26.94 ± 1.51 26.45 ± 1.54

Relative Humidity (%) 81.14 ± 5.33 79.36 ± 5.68 83.94 ± 6.69 82.83 ± 5.16
Rainfall Amount (mm) 7.52 ± 21.23 7.48 ± 20.68 8.88 ± 23.72 5.93 ± 13.41

Atmospheric Pressure (hPa) 1010.18 ± 1.74 1010.01 ± 1.72 1009.86 ± 1.54 1009.97 ± 1.54
CO (ppm) 0.45 ± 0.15 0.65 ± 0.24 0.36 ± 0.14 0.30 ± 0.13
SO2 (ppm) 0.00093 ± 0.00075 0.00099 ± 0.0011 0.0013 ± 0.00076 0.00080 ± 0.00068
NO2 (ppm) 0.0055 ± 0.0016 0.0072 ± 0.0027 0.0059 ± 0.0020 0.0020 ± 0.00088

Solar Radiation (MJ/m2) Not Available 18.37 ± 5.54 16.80 ± 4.86 Not Available

3.2. Multiple Linear Regression Model

The MLR models were developed and the models’ summary is depicted in Table 3. The range of
the Variance Inflation Factor (VIF) for the independent variables of the MLR model was in the range of
1.012–1.926. The VIF values were lower than 10, which demonstrates that the multi-collinearity issue
does not exists in the model. Durbin Watson (D-W) statistics demonstrate that the models are able to
cater the autocorrelation, as the values were in the range of 2.007–2.150. The residual (error) is critical in
choosing the ampleness of the factual model. On the off chance that the error demonstrates any sort of
pattern, it is interpreted that the model does not deal with all of the methodical data (Figures 4 and 5).
Figure 4 indicates histograms of the residuals of PM10 models. The residual analysis shows that the
residuals were normally distributed with zero mean and constant variance. The plots of fitted values
with residuals for the PM10 model are shown in Figure 5, indicating that the residuals are uncorrelated
because the residuals are contained in a horizontal band and hence obviously that variance is constant.
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3.3. Multi-Layer Perceptron Model

The number of neurons in the hidden layer is assessed through a few references as expressed in
Section 2.6 (Materials and Methods). The range of the tried number of neurons in the hidden layer is
organized and appeared in Table 4.

Table 4. Calculated range of neurons.

Site Number of Inputs Range of Neurons

1 9 1–19
2 10 1–21
3 10 1–21
4 9 1–19

The best combination of different sigmoid functions, which includes Logsig, Tansig and Purelin,
were determined through several trials in the training phase. It should be noted that the best results are
marked with bold (Table 5). The selection of the best model during the training phase is strictly based
on the R2 and RMSE. Site 1, Site 2 and Site 4 have the best combination of Logsig-Purelin activation
function while Site 3 has the best combination of Tansig-Purelin activation function. The combination
of Logsig/Tansig-Purelin activation functions is similar to the results deliberated by [43,55,59,60] and
has been proposed by several researchers in training the MLP model [34,52]. The optimum number of
neurons in hidden layer varies among 17–20 with 18 neurons (Site 1), 20 neurons (Site 2), 17 neurons
(Site 3) and 18 neurons (Site 4). The inputs that are fed into the MLP models are able to explain 69%
(Site 1), 72% (Site 2), 77% (Site 3) and 79% (Site 4) of the variance in data. The forecasted and observed
PM10 concentrations for all sites are depicted in Figure 6. There is a very good agreement between the
predicted and observed concentration of PM10 during the training phase of MLP models.

Table 5. MLP models of different activation functions. RMSE: Root Mean Square Error. Best results
marked in bold.

Activation Function for
Hidden Layer

Activation Function
for Output Layer

Optimum Number of
Neurons in Hidden Layer

RMSE
(µg/m3) R2

(a) Site 1
Logsig Purelin 18 8.49 0.691
Logsig Tansig 17 8.58 0.684
Tansig Purelin 17 8.54 0.687
Tansig Logsig 18 8.57 0.685
Logsig Logsig 17 8.60 0.683
Tansig Tansig 19 8.51 0.690

(b) Site 2
Logsig Purelin 20 9.44 0.722
Logsig Tansig 21 9.45 0.720
Tansig Purelin 21 9.48 0.718
Tansig Logsig 20 9.49 0.716
Logsig Logsig 19 9.50 0.715
Tansig Tansig 20 9.45 0.720

(c) Site 3
Logsig Purelin 19 7.60 0.766
Logsig Tansig 21 7.63 0.761
Tansig Purelin 17 7.59 0.767
Tansig Logsig 21 7.62 0.761
Logsig Logsig 17 7.64 0.760
Tansig Tansig 20 7.60 0.765

(d) Site 4
Logsig Purelin 18 9.57 0.794
Logsig Tansig 15 9.59 0.792
Tansig Purelin 19 9.59 0.792
Tansig Logsig 19 9.65 0.786
Logsig Logsig 18 9.61 0.790
Tansig Tansig 17 9.62 0.790
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3.4. Radial Basis Function Models

Trial and error method for different spread numbers are used and the best predictive model is
marked with bold (Table 6). The optimum number of nodes in the hidden layer was automatically
determined during the training of the model. The best spread number was 1 with 3620 neurons in
the hidden layer, 0.5 with 2254 neurons, 0.1 with 1181 neurons and 0.1 with 730 neurons for Site 1,
Site 2, Site 3, and Site 4, respectively. In terms of accuracy, Site 1 was able explain 93% of the total
variance in data, Site 2 could explain 92%, Site 3 89% and Site 4 83%. The error was measured via
RMSE, which were 4.08 µg/m3

, 7.11 µg/m3, 6.56 µg/m3 and 9.19 µg/m3, for Site 1, Site 2, Site 3 and Site
4, respectively. Overall, the predictive model for rural site has slightly lower accuracy as compared
with urban and suburban sites. Figure 7 depicts the forecasted and observed concentration of PM10 at
all areas.

Table 6. Result using different spread numbers. Best results marked in bold.

Spread Number Number of Neurons RMSE (µg/m3) R2

(a) Site 1
0.1 1736 4.08 0.928
0.2 2129 4.09 0.928
0.3 2336 4.09 0.928
0.4 2414 4.09 0.928
0.5 2447 4.09 0.928
0.6 2473 4.08 0.928
0.7 2519 4.09 0.928
0.8 2500 4.09 0.928
0.9 2695 4.09 0.928
1 3620 4.08 0.929

(b) Site 2
0.1 1705 7.11 0.920
0.2 1745 7.11 0.920
0.3 2042 7.11 0.920
0.4 2171 7.11 0.920
0.5 2254 7.11 0.921
0.6 2264 7.11 0.920
0.7 2306 7.11 0.920
0.8 2331 7.11 0.920
0.9 2334 7.11 0.920
1 2332 7.11 0.920

(c) Site 3
0.1 1181 6.56 0.893
0.2 1378 6.57 0.892
0.3 1587 6.57 0.892
0.4 1696 6.57 0.892
0.5 1753 6.57 0.892
0.6 1778 6.57 0.892
0.7 1826 6.57 0.892
0.8 1835 6.57 0.892
0.9 1857 6.57 0.892
1 1878 6.57 0.892

(d) Site 4
0.1 730 9.19 0.827
0.2 458 9.19 0.826
0.3 545 9.19 0.826
0.4 619 9.19 0.826
0.5 684 9.19 0.826
0.6 715 9.19 0.826
0.7 723 9.19 0.826
0.8 754 9.19 0.826
0.9 772 9.19 0.826
1 764 9.19 0.826
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The remaining 30% of the data were used for the model testing by using the selected combination of
activation functions and the optimum number of neurons, as during the training stage. The forecasted
daily PM10 concentrations for the model derived for all sites were plotted against the observed values
to determine a goodness-of-fit of the models as validation for the linear models. The regression
lines showing 95% confidence interval were also drawn. Most of the points fall in the range of 95%
confidence interval. Lines A and C are the upper and lower 95% confidence limit for the regression
model. The R2 is between 0.549–0.665 for the MLR models (Figure 8), 0.680–0.812 for the MLP models
(Figure 9) and 0.693–0.886 for the RBF models (Figure 10).
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3.5. Models Evaluation and Selection

Several performance indicators, such as Root Mean Square Error (RMSE), Normalized Absolute
Error (NAE), Correlation Coefficient (R2), Prediction Accuracy (PA) and Index of Agreement (IA),
were used in the process of the evaluation and selection of the best-fitted model for each site. The error
measures such as RMSE and NAE show the best model if the evaluated values are near zero, while R2,
PA and IA are known as accuracy measures; when these values approach one, it indicates a better
model. It should be noted that the best results are marked in bold (Table 7).

In terms of the non-linear model, RBF was chosen as the best model rather than the MLP model.
Results show that the RBF model was able to reduce the error with 6.29 µg/m3 (RMSE), 0.0981 (NAE),
and increase the accuracy with 0.864 (R2), 0.863 (PA) and 0.963 (IA); meanwhile, the MLP model showed
results of 7.42 µg/m3 (RMSE), 0.120 (NAE), 0.811 (R2), 0.810 (PA) and 0.946 (IA). RBF for Site 2 also
showed a low error and high accuracy, with 5.12 µg/m3 (RMSE), 0.0896 (NAE), 0.885 (R2), 0.885 (PA) and
0.969 (IA), compared to the MLP model with 7.45 µg/m3 (RMSE), 0.136 (NAE), 0.758 (R2), 0.758 (PA) and
0.928 (IA). The same model was also chosen for Site 3 and Site 4, with 7.95 µg/m3 (RMSE), 0.149 (NAE),
0.692 (R2), 0.693 (PA) and 0.902 (IA) and 6.37 (RMSE), 0.143 (NAE), 0.801 (R2), 0.802 (PA) and 0.943 (IA),
respectively, as compared to the MLP model for the same site with 8.11 µg/m3 (RMSE), 0.170 (NAE),
0.679 (R2), 0.680 (PA) and 0.898 (IA) and 6.39 µg/m3 (RMSE), 0.135 (NAE), 0.800 (R2), 0.799 (PA) and
0.942 (IA), respectively. Generally, the results show that both MLP and RBF models are close to each
other. Unfortunately, the initial weight values are randomly assigned; thus, repeated simulations or
training are needed to obtain the best representation of that particular model for MLP. In contrast,
RBF has unique training without repeated training simulations [71]. The small area of input space
in RBF provides better approximation than MLP, which uses a sigmoid function, which consumes a
larger space [42].

This study looks in the profundity of the comparison between the two models used for the
prediction of PM10 concentration on the next day. It was proven that for the non-linear model,
in particular, RBF is a better model in the prediction of PM10 concentration than the linear model,
namely MLR, since the statistical indices of the first were methodically better contrasted with the ones
of the reference model. The non-linear model was able in reducing the error of the models by 78.9%
(Site 1), 73.8% (Site 2), 32.1% (Site 3) and 39.8% (Site 4). Interestingly, the non-linear model proved
an increase in the accuracy of forecasting by 62.3% (Site 1), 48.2% (Site 2), 16.2% (Site 3) and 15.0%
(Site 4). This study was able prove that there was an improvement of the non-linear model in terms of
reducing the model’s error and increasing the model’s accuracy for PM10 forecasting. Moreover, the
execution of the RBF-ANN display is exceptionally practical, and in this manner, it can be considered
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for operational utilization. Results from previous, similar studies are in agreement with these findings,
as shown in Table 8. It is proven that, the development of stepwise MLR model executed with high
error and low accuracy as compared to the MLP model in the prediction of PM10 and PM2.5 [71].
The MLP model, if properly trained with suitable and optimum neuron numbers in the hidden layer,
might provide a meaningful air quality prediction model. Another study proved that the ANN
model is better in the prediction of particulate matter in Hong Kong, which is in agreement with our
findings [72]. Prediction of PM10 in Sakarya City in Turkey has proved that the nonlinear model (MLP)
outperforms the linear model (MLR) with vast differences in the R2 of 0.84 and 0.32, respectively [73].
Similarly, a previous study in the development of prediction model in industrial area confirmed that the
MLP model is able to increase the accuracy by 29.9%, and can reduce the error by 69.3% as compared
to the MLR model [35]. Another study in Malaysia clarified that there is an improvement of the linear
model in R2 as compared to nonlinear model [58]. Findings have shown that the nonlinear models
outperform the linear model in the prediction of PM2.5 at the USA-Mexico border. Furthermore, the
RBF model is more suited for the prediction process as compared to MLP [74]. Great performance of
non-linear models was because of the way that it can display very non-linear functions and can be
prepared to precisely conclude when given new concealed data. Moreover, ANN does not require any
earlier assumptions with respect to the conveyance of training data, and no decision with regards to the
relative significance of the different info estimations should be made [75]. These highlights of the neural
networks make them the alluring contrasting option when creating numerical models and picking
between statistical methodologies. Moreover, they have some outstanding effective applications in
tackling issues of different orders [36,42,76].

Table 7. Results of models evaluation through performance indicators. Best results marked in bold.
(Root Mean Square Error (RMSE), Normalized Absolute Error (NAE), Correlation Coefficient (R2),
Prediction Accuracy (PA) and Index of Agreement (IA), Radial Basis Function (RBF), Multi-Layer
Perceptron(MLP)).

Site Method RMSE
(µg/m3) NAE R2 PA IA

1
MLR 28.0 0.499 0.569 0.546 0.543
MLP 7.42 0.120 0.811 0.810 0.946
RBF 6.29 0.0981 0.864 0.863 0.963

2
MLR 18.0 0.373 0.548 0.608 0.677
MLP 7.45 0.136 0.758 0.758 0.928
RBF 5.12 0.0896 0.885 0.885 0.969

3
MLR 11.4 0.225 0.598 0.878 0.807
MLP 8.11 0.170 0.679 0.680 0.898
RBF 7.95 0.149 0.692 0.693 0.902

4
MLR 10.6 0.235 0.665 0.912 0.838
MLP 6.39 0.135 0.800 0.799 0.942
RBF 6.37 0.143 0.801 0.802 0.943

Table 8. Comparison with similar studies. (Multiple Linear Regression (MLR), Artificial Neural
Networks (ANN), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Extreme Learning
Machine (ELM), Principal Component Analysis (PCA), Square Multilayer Perceptron (SMLP)).

Source Country Pollutants R2 Model Type

Elbayoumi et al., (2015) [71] Malaysia PM10 and PM2.5
0.44–0.57 (MLR)
0.65–0.78 (MLP) MLR, ANN (MLP)

Zhang and Ding (2017) [72] Hong Kong PM2.5, NO2, NOx, SO2, O3
0.50–0.64 (MLR)
0.52–0.67 (ANN) MLR, ANN (RBF, MLP, ELM)

Ceylan and Bulkan (2018) [73] Turkey PM10
0.32 (MLR)
0.84 (MLP) MLR, ANN (MLP)
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Table 8. Cont.

Source Country Pollutants R2 Model Type

Abdullah et al., (2018) [35] Malaysia PM10
0.53 (MLR)
0.69 (MLP) MLR, ANN (MLP)

Ul-Saufie et al., (2013) [58] Malaysia PM10
0.62 (MLR)
0.64 (MLP) MLR, ANN (MLP), PCA

Ordieres et al., (2005) [74] US-Mexico PM2.5

0.40 (MLR)
0.38 (MLP)

0.37 (SMLP)
0.46 (RBF)

MLR, ANN (MLP, SMLP, RBF)

4. Conclusions

This study was able to prove that among the forecasting algorithms, the non-linear algorithm is
better in forecasting the next day’s PM10 concentrations, with RBF giving the best prediction value.
The RBF model was able to forecast PM10 concentration successfully, explaining 93% and 92% (urban),
89% (suburban) and 83% (rural) of the variance in the data. Thus, we recommend the local authority
and the DOE to use the RBF models in forecasting PM10 concentration in areas without AQMS with
similar land use for improving air quality at specific locations. Moreover, with this model, authorities
can warn communities of dangerous levels of PM10 sooner, so that they can reduce outdoor activities
and decrease their exposure to unhealthy levels of air quality. This result can also be adopted at regions
on the West Coast of Peninsular Malaysia and East Malaysia (Sabah and Sarawak), provided that they
follow the methods highlighted in this study, using local meteorological and gaseous pollutants data.
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