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Abstract
One of the major challenges and difficulties to generate optimal operation rule for dam and reservoir operation are how

efficient the optimization algorithm to search for the global optimal solution and the time-consume for convergence.

Recently, evolutionary algorithms (EA) are used to develop optimal operation rules for dam and reservoir water systems.

However, within the EA, there is a need to assume internal parameters at the initial stage of the model development, such

assumption might increase the ambiguity of the model outputs. This study proposes a new hybrid optimization algorithm

based on a bat algorithm (BA) and particle swarm optimization algorithm (PSOA) called the hybrid bat–swarm algorithm

(HB-SA). The main idea behind this hybridization is to improve the BA by using the PSOA in parallel to replace the

suboptimal solution generated by the BA. The solutions effectively speed up the convergence procedure and avoid the

trapping in local optima caused by using the BA. The proposed HB-SA is validated by minimizing irrigation deficits using

a multireservoir system consisting of the Golestan and Voshmgir dams in Iran. In addition, different optimization algo-

rithms from previous studies are investigated to compare the performance of the proposed algorithm with existing

algorithms for the same case study. The results showed that the proposed HB-SA algorithm can achieve minimum

irrigation deficits during the examined period and outperforms the other optimization algorithms. In addition, the com-

putational time for the convergence procedure is reduced using the HB-SA. The proposed HB-SA is successfully examined

and can be generalized for several dams and reservoir systems around the world.
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1 Introduction

Water resource management is a science that attempts to

perform comprehensive planning to prevent water scarcity

in current and future periods [1, 2]. The water stored

upstream of dams is considered to be an important man-

ageable water resource that can be controlled to supply the

water demands for different uses, such as domestic, agri-

cultural, and industrial purposes, and the environmental

requirements for effective operations [3, 4]. The con-

struction of large dams provides decision makers with

flexible tools for meeting downstream demands using only

the water stored upstream of the dam and by optimizing the

operations for the available water resources [5, 6]. In recent

years, optimal operational planning and management have

been achieved by utilizing mathematical models or opti-

mization algorithms. Each problem in the optimal opera-

tion of dams and reservoirs can be defined within the

mathematical procedure of the optimization algorithm and

by identifying problems with single or multiple objective

functions considering the system constraints [7, 8]. The

water supply, hydropower production or responsiveness of

the environmental demands can be considered as different

aims or objective functions in a problem of a particular

dam and reservoir system. In addition, dam and reservoir

systems are considered to be highly nonlinear, stochastic

and multidimensional problems; they are highly complex

optimization applications. Therefore, there is a need to

develop an effective optimization algorithm that can

address such highly complex applications to achieve opti-

mal planning. Evolutionary algorithms with high compu-

tational speeds have been used to obtain the most accurate

solutions [9–15].

Recently, evolutionary algorithms have shown stronger

potential for solving such complex problems with multi-

objective functions than traditional optimization models

such as nonlinear or linear programming [11, 13, 14, 16].

Traditional methods experience convergence problems,

especially in complex applications and when allocating the

global solution to multiple reservoirs under different non-

linear constraints [9, 10, 12, 13, 15, 17]. Therefore, evo-

lutionary algorithms that require less computational time

and have a good search ability for the global optima can be

applied to generate the optimal operation rules for dams

and reservoirs. Managing the available water resources at

the dams and reservoirs water systems is considered as a

vital challenges and might be a source of planning diffi-

culties for the decision makers. For example, different

water’s stakeholders downstream the dam and reservoir

water system experienced problem regarding the mismatch

between the water supply and demands. In addition, it is

difficult to develop a model that able to generate operation

rules and respond well to all the system’s needs and con-

straints. Furthermore, each dam and reservoir water system

has specific climate and hydrological conditions, so the

model must be adopted for each case individually [3, 18].

The existing evolutionary algorithms (EA) as one of the

most recent optimization algorithms used to develop opti-

mal operation rules for dam and reservoir water systems,

they have several internal random parameters. The value of

these parameters have to be assumed at the initial stage of

the model development, such assumption might increase

the ambiguity of the model outputs. Finally, these problems

may incorporate system’s parameters with uncertainties,

such as the inflow to the reservoir. Therefore, there is a

need to formulate an optimization algorithm that able to

solve these challenges with the dam and reservoir water

system operation.

1.1 Background

Afshar et al. [19] applied honey bee mating optimization

(HBMO) to solve the multireservoir system problem. The

goal was to increase the power produced for downstream

requirements. The results showed that the HBMO can

obtain a solution that was close to the global solution with

less computational time than the genetic algorithm (GA).

Genetic programming (GP) can optimize the operation of a

reservoir to supply irrigation requirements. This method

operates based on genes and chromosomes to optimize

continuous optimization problems. The results showed that

the GP can decrease the vulnerability index by considering

the water supply downstream for more operational periods

[20]. Hossain and El-Shafie [21] considered reservoir

operations with different categories of inflow, and the

results showed that the artificial bee colony (ABC) method

can provide operational rules for water releases to supply

water demands. In addition, the ABC algorithm converged

more quickly than the GA and PSO.

Nonlinear rule curves have been considered for optimal

reservoir operation based on a genetic algorithm (GA). The

results indicated that third-order rule curves based on the

GA can supply the demands better than nonlinear pro-

gramming based on lower deficiency values [22]. Biogra-

phy-based optimization (BBO) was used to decrease the

power deficiencies for a reservoir and hydropower in Iran.

The results showed that the annual power production based

on BBO was 12 and 14% more than with GA and particle

swarm optimization (PSO), respectively [23].

The weed algorithm (WA) was used to increase power

generation in a multireservoir system, and the results

indicated that the WA could obtain the best solution based

on a lower number of functional evaluations. The design of

the algorithm is inspired by the properties of a weed’s life.

In addition, the power production for the multireservoir
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system based on the WA increased by 12% and 15% more

than with the GA and PSO, respectively [24]. Hosseini-

Moghari et al. [25] applied the imperialist competitive

algorithm (ICA) to manage a reservoir for irrigation. The

results indicated that the ICA could optimize the objective

function of the problem of decreasing irrigation demands,

so the volume deficiencies were ignored by the ICA, in

contrast with the GA and PSO. Hossain et al. [26] applied

the ABC method to reservoir operation to extract the rule

curves for the released water volume. The results indicated

that the ABC method, which is based on a volumetric

reliability index, could better supply the downstream irri-

gation demands than the particle swarm algorithm and

genetic algorithm. Mohammadrezapour et al. [27] applied

the cuckoo algorithm to the water allocation controlled by

a dam. The results showed that the cuckoo algorithm

achieved a higher reliability index than the PSOA and GA.

Another study considered the optimization of mul-

tireservoir operations in China. The aim of the study was to

maximize power generation by a multireservoir system

using the shark algorithm (SA), which is based on the

rotational movement of sharks. The SA increased the

power production by 12% more than the GA [28].

The Krill algorithm (KA) was used to optimize an irri-

gation system by decreasing the deficiency volume, and the

results indicated that the KA had a faster convergence

speed than other methods; furthermore, it could supply the

demand volumes with a higher reliability index [29]. Ming

et al. [30] used the PSOA to solve multiobjective opti-

mization problems. The results showed that the PSOA,

which is based on the modification of the inertial weights,

could cover the irrigation and environmental demands

better than the GA, which is based on a higher certainty

index. Karami et al. [31] applied the WA for the irrigation

and hydropower generation management of two reservoirs

in Iran. The model was mainly designed to minimize the

total water deficit based on only one decision variable—the

water released. The released water based the generated

operation rule using the WA could meet the required water

demands for irrigation and hydropower with the least risk.

The results of these studies show that soft computing

methods and artificial intelligence methods based on the

least computational time and the ability to receive large

data and adapt to different hydrological and climate con-

ditions are powerful tools for solving dam and reservoir

problems with objective functions and constraints.

1.2 Problem statement and innovation

Evolutionary algorithms outperform traditional methods in

generating optimal operation rules for dams and reservoirs;

however, each algorithm has specific drawbacks that neg-

atively influence the overall model performance. This study

proposes a method for hybridizing the PSOA with the BA

to overcome these drawbacks. The BA is considered a

successful algorithm for several engineering optimization

applications, including dams and reservoirs [32–34].

However, the results of previous studies have indicated that

the BA may become trapped in local optima when solving

multireservoir problems and requires more computational

time to obtain converged solutions [32, 33, 35]. Although

several studies have used either the BA or the PSOA for

dam and reservoir water system, the main goal of this paper

is to integrate the advantages of the two algorithms and

then generate a more effective hybrid algorithm based on

both the BA and PSO.

The BA has the capability of automatically zooming in

on the region where the optimal solution can be identified;

however, this feature gives it the ability to converge

quickly in the early stage and dramatically more slowly in

later stages. As a result, the BA experiences a slow con-

vergence rate when searching for the optimal solution. In

addition, no mathematical analyses are available to accel-

erate the convergence rate. Furthermore, the attained

accuracy for the global optimal solution is insufficient,

especially for large-scale and highly complicated applica-

tions, because several parameters must be tuned and con-

trolled within the algorithm procedure. Therefore, there is a

need to improve the performance of the BA to ensure high

performance and accuracy to achieve the optimal solution

[36]. On the other hand, the PSOA acts based on global and

local leader procedures, which ensures the sharing of

information among all particles. Utilizing this feature

allows the PSOA to adopt the solution achieved using the

BA procedure in terms of its control parameters and fre-

quency tuning. In terms of the BA parameter control, the

PSOA can be adapted to provide automatic switching from

exploration to exportation when approaching the optimal

solution, which improves the convergence process and

accurately identifies the optimal solution. The PSOA can

be used to adjust the frequency variation to mimic the true

system functions. However, the PSOA suffers from partial

optimism because it experiences an irregular direction

toward the optimal solution. Fortunately, such drawbacks

can be adjusted by the BA using the pulse emission

mechanism. Thus, the hybridization of the BA with the

PSOA could result in a new hybrid algorithm that acts in

parallel to replace the suboptimal solution attained by one

algorithm with one that is closer to the optimal solution of

the other algorithm. This parallel structure for the BA and

PSOA algorithms results in the hybrid bat–swarm algo-

rithm (HB-SA), which integrates the advantages of both

algorithms and overcomes their disadvantages. As a result,

the HB-SA can guarantee a faster convergence rate and

more accurate identification of the global optima for large-
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scale engineering applications with highly nonlinear com-

plex systems.

1.3 Objective

The main objective of this study is to generate an optimal

operational policy for dam and reservoir operation to

minimize the irrigation deficit downstream of the dam. The

potential of the hybrid bat and particle swarm optimization

algorithm (HB-SA) is evaluated. The proposed HB-SA is

then applied to the Golestan and Voshmgir dams as a case

study to evaluate the ability of the HB-SA to derive a

reliable, highly resilient and low-vulnerability release

policy to minimize the irrigation deficit downstream of the

dams. The multireservoir system problem is considered to

be one of the most difficult problems in water resource

management, so when decision makers are given a new

method, they prefer to test it in a real-life scenario, such as

an actual multireservoir system. Allocating water fairly in

these problems is very difficult; thus, developing mathe-

matical models for problems with numerous complex

constraints is important for designers. The reservoir oper-

ation problem and the evolutionary algorithms have several

uncertainties. Some of these uncertainties are related to the

random parameters used in the algorithms, which can be

computed based on accurate sensitivity analyses, and other

uncertainties are related to the hydrological parameters and

reservoir-related issues. This study focuses on the capa-

bilities of the new evolutionary algorithm and compares the

results with those of other methods from the literature. It

considers the uncertainties related to the optimization

algorithms and random parameters and identifies future

projects that consider other uncertainties such as inflow and

evaporation.

2 Methodology

2.1 Bat algorithm

Bats can generate loud sounds to separate obstacles from

prey based on the reception of echoes generated by the

surroundings. Thus, bats have a powerful auditory ability

for sound reception. The BA applies the mathematical

concepts of a bat’s life based on the following assumptions

[33]:

1. All bats use their echolocation ability based on sounds

received from their surroundings to identify prey from

obstacles.

2. The velocity, position, wavelength, frequency, and

loudness for a random flight of bats are represented by

yl, kl, fmin and Ao, respectively.

3. The loudness varies between the initial value (Amin)

and a large value (A0).

The pulsation rate (rl) is considered for each bat, and the

value of this parameter is in the interval [0, 1]; 0 means that

the bat has not received any pulse, and 1 means that the bat

received the maximum pulsation rate. The frequency,

velocity, and position of the bat are updated based on the

following equations:

fI ¼ fmin þ fmax � fminð Þ � bI ð1Þ
vl tð Þ ¼ yl t � 1ð Þ � Y�½ � � fl; t ¼ 1; . . .; T ð2Þ
yl tð Þ ¼ yl t � 1ð Þ þ vl tð Þ � t ð3Þ

where fl is the frequency, fmin is the minimum frequency,

fmax is the maximum frequency, b is a random vector

within the interval [0, 1], which take different value at each

iteration, vl tð Þ is the bat’s velocity, Y� is the best position, t
is the time step, and T is the total of the assessment periods.

The local search for the BA is considered based on a

random walk and the following equation:

y tð Þ ¼ y t � 1ð Þ þ eA tð Þ ð4Þ

where e is a random value between - 1 and 1, and A tð Þ is
the loudness. The loudness and pulsation rate are updated

for each level. When a bat finds prey, the pulsation rate

increases, and the loudness decreases. The pulsation rate is

updated based on the following equation:

rtþ1l ¼ r0l 1� exp �ctð Þ½ �Atþ1
l ¼ aAt

l ð5Þ

where rtþ1l is the new pulsation rate, r0l is the initial pul-

sation rate, and a and c are constants. The chart of the

algorithm is shown in Fig. 1.

2.2 Particle swarm optimization algorithm

The search space is based on D dimensions; the position

vector is Xi ¼ xi1; xi2; . . .; xiDð Þ, and the velocity vector is

Vi ¼ vi1; vi2; . . .; viDð Þ. The best previous position for the

bat is considered based on Pi ¼ pi1; pi2; . . .; piDð Þ. The g

index shows the best particle with the best position among

the other particles. The velocity and position will be

updated based on following equation [28]:

vnþ1id ¼ v wvnid þ
c1r

n
1 pnid � xnid
� �

Dt
þ
c2r

n
2 pngd � xnid

� �

Dt

2

4

3

5 ð6Þ

xnþ1id ¼ xnid þ Dtvnþ1id ð7Þ

where vnþ1id is the new velocity of the particle, v is the

constriction coefficient, w is the inertia weight, c1 and c2
are the acceleration coefficients, r1, and r2 are random

numbers, Dt is the time step, n is the iteration number, and

xnþ1id is the new position of the particle. First, the random
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parameters are initialized, and the size of the population is

then determined. The objective function is computed for

each particle, and the best particle is then determined. The

velocity and position are computed using Eqs. (6) and (7),

respectively. The convergence criterion is checked; if it is

satisfied, the algorithm finishes.

2.3 Hybrid bat–swarm algorithm

The weaknesses of the BA, such as being trapped in a local

optimum and the slow convergence speed, can be improved

using a hybrid and parallel structure. A communication

strategy is used between the BA and the PSOA. The value

of the objective function is computed for each member, and

these solutions are then sorted based on the best quality.

The main idea is to replace the weak solution of one

algorithm with the best solution of the other algorithm. The

population of algorithms is divided into different sub-

groups, and the subgroups act independently for each

iteration. When the communication strategy is triggered,

the information exchange between the algorithms occurs.

The substitution of the weaker solutions of each algo-

rithm allows the method to obtain the benefits of the

cooperation. When the substitution of the solutions occurs,

information is exchanged between the BA and the PSOA.

In addition, each algorithm acts based on the optimization

process and its independent performance.

Considering both algorithms independently, the k agents

are the best solutions and will be selected based on the

quality of the computed objective functions for both

algorithms. These k agents will be copied and will replace

the worst solutions of the other algorithms. The k agents

are divided into subgroups, which will share their infor-

mation with the subgroups of the other algorithm; this is

shown in Fig. 2, in which R is the number of the com-

munication strategy between the different groups.

The different levels of the hybrid algorithm are con-

sidered based on the following steps:

1. First, the random parameters for both algorithms are

determined independently.

2. The objective function will be computed for both

algorithms.

3. The bat and particle with the best position based on the

computed objective functions are determined.

4. The velocity and position for the BA and PSOA are

computed based on step 3.

Fig. 1 Flowchart for the BA
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5. The velocity and position for the BA and PSOA are

computed using Eqs. (2), (3), (6), and (7).

6. After the position and velocity updating, as well as the

computation of the objective function for the BA and

PSO, k particles and bats are selected. These agents are

the best particles or bats.

7. These agents are copied into the other algorithms,

where they replace the worst solutions of the other

algorithms.

8. The convergence criteria are checked. If they are

satisfied, the algorithm finishes; otherwise, the algo-

rithm returns to step 2.

3 Case study

The Gorganrood Basin is an important basin in Northern

Iran that contains one of the main arteries that discharge

into the Caspian River. The Gorganrood River is 359.4 km

long. Two important dams (Golestan and Voshmgir) are

located in the basin (Fig. 3).

The Voshmgir Dam is the oldest dam in this basin and in

Golestan state. It was constructed in 1969, and irrigation

supply is an important duty of this dam. The reservoir

storage capacity is 47 MCM, and the annual adjustment

capacity for the dam is 117 MCM. The Golestan Dam is

located upstream of the Voshmgir Dam. It has a reservoir

capacity of 86 MCM, but this volume has been reduced to

62 MCM because of sedimentation. The characteristics of

these dams are shown in Table 1. Data from 2007 to 2012

are considered for this case study. This period was selected

due to the high confidence in the data from the stations, so

planning and management strategies can be developed

based on accurate information. In addition, a 5-year period

is sufficient for decision makers to evaluate the capabilities

of new method. Finally, accurate data are not available for

other years; thus, this period is considered for this study.

In fact, dam and reservoir water system includes a few

parameters that are stochastic in nature. For example, one

of the major parameters that influence the operation of such

system is the river streamflow to the reservoir, one of the

system input. This parameter is stochastic in nature as it

Fig. 2 Communication strategy
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takes different pattern on daily, weekly, monthly, season-

ally and even yearly basis. In addition, one of the system

losses is the evaporation losses from the surface area from

the reservoir which is affecting the reservoir water balance

and simulation. The evaporation water loss is mainly based

on the evaporation rate which is affected by the air tem-

perature. Similarly as the river streamflow, the air tem-

perature is considered as highly stochastic parameter

because its value is fluctuated over the year. Therefore,

dam and reservoir water system is considered highly

stochastic system and required a special modeling proce-

dure that able to consider the stochastic nature of the sys-

tem’s variables.

The objective function based on minimizing the irriga-

tion deficits is determined based on the following equation:

Minimize Fð Þ ¼
XT

t¼1

X2

i¼1

Di;t � Ri;t

Dmax;i

� �2

ð8Þ

where F is the objective function, T is the number of

operational periods, Dmax;i is the maximum demand in the

operational period for each dam, Di;t is the downstream

demand for each dam, and Ri;t is water released by each

dam. The continuity constraints are defined for each dam as

follows:

S1;tþ1 ¼ S1;t þ I1;t � R1;t � L1;t � Sp1;t ð9Þ

S2;tþ1 ¼ S2;t þ I2;t � R2;t � L2;t � Sp2;t ð10Þ

where S1;tþ1 is the storage volume of the Golestan Dam, I1;t
is the inflow to the Golestan Dam, R1;t is the water released

by the Golestan Dam, L1;t is the loss volume for the

Golestan Dam, Sp1;t is the loss overflow volume for the

Fig. 3 Golestan and Voshmgir dams

Table 1 Main characteristics of the Golestan and Voshmgir dams

Characteristics Voshmgir Dam Golestan dam

Type of dam Earth dam Earth dam

First year of operation 1970 1999

Height from foundation (m) 17.8 17

Crest length (m) 430 1367

Total storage capacity (mcm) 47 62

Irrigation land area (km2) 210 270

Spillway discharge capacity (m3/s) 935 1550

Average water level (m) 10 49
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Golestan Dam, and the variables in Eq. (10) are similar to

those in Eq. (9) but are related to the Voshmgir Dam. The

loss volume is computed using the following equation:

Li;t ¼ Ai;t Ei;t

� �
ð11Þ

where Ai;t is the area of each reservoir, and Ei;t is the

evaporation from each reservoir.

Qaderi et al. [37] reported the following equations

between the reservoir area and the storage based on

regressions between these parameters;

A1 ¼ �0:0037S21 þ 0:4568S1 þ 1:2026 Golestanð Þ ð12Þ

A2 ¼ �0:00114S22 þ 0:464S2 � 0:5056 ðVoshmgirÞ
ð13Þ

In addition, the constraints for the released water and

reservoir storage were considered based on the following

equations:

Smin ið Þ � Si;t � Smax;i ð14Þ

Rmin ið Þ;t�Ri;t�Rmax ið Þ;t ð15Þ

where Smin ið Þ is the minimum storage, Smax;i is the maxi-

mum storage, Rmin ið Þ;t is the minimum amount of water

released from the dams, and Rmax ið Þ;t is the maximum

amount of water released from the dams.

The penalty functions are considered based on the fol-

lowing equations:

P1i;t ¼

XT

t¼1

X2

i¼1

Si;t � Smax ið Þ
� �2

Smax ið Þ

 !

 if Si;t [ Smax ið Þ
� �

XT

t¼1

X2

i¼1

Si;t � Smin ið Þ
� �2

Smini

 !

 if Si;t\Smin ið Þ
� �

2

666664

3

777775

ð16Þ

P2i;t ¼

XT

t¼1

X2

i¼1

Ri;t � Rmax ið Þ
� �2

Rmax ið Þ

 !

 if Ri;t [Rmax ið Þ
� �

XT

t¼1

X2

i¼1

Ri;t � Rmin ið Þ
� �2

Rmini

 !

 if Ri;t\Rmin ið Þ
� �

2

666664

3

777775

ð17Þ

The mathematical model for the operation of the two

reservoirs is considered based on the following factors:

1. The released water is considered as a decision viable to

simplify the computations; in addition, this is the first

priority for the decision makers.

2. The initial positions of the particles and bats (released

water) are considered as the initial populations for both

algorithms.

3. The continuity equation is considered, and the storage

volume is computed based on this equation.

4. The storage and released water volumes should be

checked with the permissible domain, and the penalty

functions will be computed if necessary.

5. The objective function is computed for each member

and both algorithms independently.

6. The best positions for the particles and bats are

determined based on the previous step.

7. The velocity and position are updated for the BA and

PSOA.

8. The k agents for both algorithms are selected based on

the best values for the objective functions, and they are

copied and transformed to the other algorithm to

replace the worst solutions of the other algorithm.

9. The convergence criterion is checked. If it is satisfied,

the algorithm finishes; otherwise, it returns to step 2.

4 Model evaluation

Golestan and Voshmgir Dam are designed as a single

purpose water system for supplying water to irrigation

based on the irrigation water demand pattern. However,

after generating the operation rule using particular opti-

mization algorithm, this operation rule should be examined

using certain performance indexes that could measure how

effective is this operation rule. Afterward, for the com-

parison purpose, the operation rules that have been gen-

erated using the other optimization algorithms should be

examined using the same performance indexes as well.

From these two steps, the effectiveness of the proposed

model in this study could be examined against the perfor-

mance from the other optimization algorithms.

The following indexes are defined for the investigation

of the different algorithms used to optimize reservoir

operation. These indexes are widely used to determine the

capabilities of new methods for water resource manage-

ment problems based on the water release volume, water

release time and the ability to address drought periods or

critical periods:

1. Volumetric reliability index: this index is based on the

released water and downstream demand. If the released

water can supply the demand well, the value of this

index will be high [29].

aV ¼
P2

i¼1
PT

t¼1 Ri;t
P2

i¼1
PT

t¼1 Di;t

� 100 ð18Þ

where aV is the volumetric reliability index.

2. Resiliency index: this index indicates the speed of the

system to recover from a failure. It is important that a
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system recovers after a single failure during an

operational period. A high value of this index is

desirable [28].

ci ¼
fsi

Fi

ð19Þ

where ci is the resiliency index, fsi is the number of

failure series generated in the ith reservoir, and Fi is

the number of failure periods generated in the ith

reservoir.

3. Vulnerability index: this index indicates the maximum

failure percentage generated during operational peri-

ods. Thus, a low value of this index is desirable.

k ¼ Max2i¼1 MaxTt¼1
Di;t � Ri;t

Di;t

� �� �
ð20Þ

where k is the vulnerability index.

5 Results and discussion

The irrigation supply is an important issue when operating

multiple reservoirs, especially during periods of drought.

The negative influences of droughts on irrigation man-

agement is the reason that decision makers for water

resources pay particular attention to optimally operating

multireservoir systems to avoid irrigation deficits. Thus,

the proposed HB-SA will be applied mainly to minimize

the water deficit for the irrigation demands downstream of

the reservoir. In the following subsections, the procedure of

the proposed hybrid algorithm will be evaluated followed

by a direct application to the proposed case study presented

in Sect. 3.

5.1 Initialization and validation of the HB-SA

Meta-heuristic algorithms have random parameters that

should be predetermined and initialized before application

to real problems. However, accurate initial values of these

parameters are not specified for users due to the high

uncertainties of these parameters. Thus, sensitivity analy-

ses are often used to accurately determine these parame-

ters. Although some studies use reported values for the

parameters or use the trial and error process, a sensitivity

analysis is the best method because it shows the variation

of the objective function caused by variations of the values

of the parameters.

For example, an accurate determination of the popula-

tion size in meta-heuristic algorithms is an important step

to initialize the minimization/maximization purpose of the

objective function. Population sizes between 10 and 70

were examined to minimize the objective function. The

results show that the initial population size of 50 provided

the minimum value of the objective function, as shown in

Table 2. Similarly, the proposed algorithm was examined

for maximum and minimum frequency ranges from 3 to 9

and from 1 to 4, respectively. Table 2 shows that the

maximum frequency is 7. The other initial parameters,

including the maximum loudness, acceleration coefficient

and inertia weight, are 0.7, 2 and 0.7, respectively

(Table 2). The other parameters of the different methods

are based on reported values and the permissible ranges

from previous studies. In addition, some of the parameters

do not affect the results, which is shown by the sensitivity

analysis.

The next step in the parameter initialization is to

examine the potential of the algorithm to identify the

global optimum. Qaderi et al. [37] reported that the global

solution of this problem, based on the Lingo software and

nonlinear programming, was 0.110 (Table 3). The pro-

posed HB-SA was examined for the same application and

compared with the performances of other optimization

algorithms, including the water cycle algorithm (WCA),

harmony search (HS), intelligent colony algorithm (ICA),

bat algorithm (BA) and particle swarm optimization algo-

rithm (PSOA). All of the algorithms described in the lit-

erature review section have been shown to have good

ability for solving complex water resource management

problems. Thus, the new hybrid method can be compared

with these methods to demonstrate its capabilities.

The algorithms were examined for 10 different runs via

two different index average solutions and the variation

coefficient. The proposed HB-SA outperformed the other

algorithms and achieved a closer value of the minimum

objective function than the other algorithms. Specifically,

the proposed HB-SA attained an average value within the

10 runs of 0.115, which is approximately 95% of the global

optimal value. In contrast, when using the PSOA and BA,

the average values of the minimum objective function are

0.212 and 0.156, respectively, which are 88% and 47%

greater, respectively, than the global solution. Similarly,

the average solutions for the minimal objective functions

achieved using the other algorithms (WCA, ICA, and HS)

are less accurate than the proposed HB-SA based on the

variation coefficient index. The HB-SA gave a value of

0.005, which is lower than the other algorithms and shows

that the HB-SA gives the most reliable solution, as shown

in Table 3.

In order to examine the proposed optimization algorithm

against the existing ones for the ability to search for the

global optima in reasonable time, the reference optimal

objective function that has been achieved using the non-

linear programming using LINGO optimization software

has been considered. In fact, all the details of the case study

have been used and adjusted within the LINGO
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optimization software and an optimal objective function

value of 0.11 has been successfully attained. However, the

LINGO optimization software experienced a few limita-

tions that should be carefully considered every time while

using it when applying for generating optimal operation

rule for dam and reservoir water system. First, the solution

algorithm within the nonlinear programming process

required very extensive CPU time to achieve the perfor-

mance goal, which could be around 1 h. In fact, the

required time-consuming to achieve the global optima is an

essential factor in operating dam and reservoir water sys-

tem as it might effect on the proper timing to functionalize

the value of the decision variable. In fact, it might nega-

tively influence on the whole operation performance and

the system’s objective function. Second, in most cases

while real operation, there is a need to carry out some

adjustments for the water system setup due to unexpected

changes in the operation, at that time, there is a need to

make readjust the whole case study within the software

from the beginning which requires very long time to per-

form. On the other hand, for the meta-heuristics algorithm,

it is only required to adjust the corresponding variable in

the algorithm procedure without need to re-setup the whole

case study.

5.2 Analysis of irrigation deficiencies

After initializing the proposed HB-SA parameters and

validating its performance, the HB-SA was applied to the

case study. The main purpose of the proposed HB-SA is to

optimize the operation of the Golestan and Voshmgir dams

by minimizing the irrigation deficit, which minimizes the

difference between the dam releases and the irrigation

demand considering monthly time increments. Figure 4a

and b shows the distributions of the irrigation deficit in

MCM on a yearly basis (for 5 years) based on the exam-

ined optimization algorithms for the Golestan and Vosh-

mgir dams, respectively. Figure 4a shows that the

operation rule generated utilizing the proposed HB-SA

achieved the minimum irrigation deficit. During the 5 years

of operation using the HB-SA, the irrigation deficits ranged

between 1 and 2.3 MCM in the first and fourth years of

operation. In contrast, considering the operation rules

attained using the BA and PSOA individually, the irriga-

tion deficits ranged between 4 and 12 MCM for the BA and

between 12 and 17 MCM using the PSOA. For example,

the average deficit for the HB-SA is 1.86 MCM for the

Golestan Dam, which is 87%, 62% and 40% less than those

of the BA, WCA and PSOA, respectively.

Table 2 Sensitivity analysis of the HB-SA

Group

size

Objective

function

Maximum

frequency

Objective

function

Minimum

frequency

Objective

function

Maximum

loudness

Objective

function

10 0.215 3 0.221 1 0.167 0.3 0.178

30 0.198 5 0.178 2 0.115 0.5 0.154

50 0.115 7 0.115 3 0.124 0.70 0.115

70 0.117 9 0.124 4 0.132 0.90 0.124

Acceleration

coefficient (c1 = c2)

Objective

function

Inertia

weight

Objective

function

1.6 0.187 0.3 0.188 The variations of the values of different parameters versus the variations of

values of the objective function1.8 0.176 0.5 0.165

2.0 0.114 0.7 0.115

2.2 0.134 0.90 0.124

Table 3 Average optimal objective functions using different algo-

rithms compared to the proposed HB-SA

Run PSOA BA WCA HB-SA

1 0.214 0.165 0.157 0.115

2 0.216 0.155 0.170 0.117

3 0.212 0.155 0.157 0.115

4 0.212 0.155 0.157 0.115

5 0.212 0.155 0.157 0.115

6 0.212 0.155 0.157 0.115

7 0.212 0.155 0.157 0.115

8 0.212 0.155 0.157 0.115

9 0.212 0.155 0.157 0.115

10 0.212 0.155 0.157 0.115

Average 0.212 0.156 0.158 0.115

Variation coefficient 0.008 0.018 0.042 0.005

Global solution [37] 0.110
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These results showed that the operation rule using the

proposed HB-SA could reduce the irrigation deficit better

than using the BA and PSOA alone. Furthermore, the

results showed that the proposed HB-SA achieved better

performance than that reported for the same case study by

Qaderi et al. [37], which proposed using the WCA to

optimize the operation. The range of the irrigation deficit

using the WCA was between 3 and 7 MCM during the

5 years of operation, which is nearly 3 times the irrigation

deficits achieved using HB-SA.

The same performance for the HB-SA was observed for

the Voshmgir Dam, although during the 5 years of opera-

tion, the minimum irrigation deficit achieved using the

WCA was 1 MCM, which is equal to the results achieved

using the proposed HB-SA. The maximum irrigation defi-

cits are 10 MCM using the WCA and 4 MCM using the

HB-SA. These results demonstrate that the proposed HB-

SA can be applied to different case studies and achieve the

same level of performance.

For further analysis, the proposed algorithms were

evaluated based on error indexes, including the correlation

coefficient R2, the root mean square error (RMSE) and the

mean absolute error (MAE). The coefficient of determi-

nation (R2) is used to examine the linear relationship

between the water released and the irrigation demand. R2 is

calculated by dividing the covariance of the water released

and the irrigation demand by the product of the standard

deviation of those values. This indicator illustrates the

precision of the linear fit and is a representation of the

variance between the water released and the irrigation

demand. The second indicator is the root mean square error

(RMSE), which is used to measure the variation between

the observed values of the required variable (irrigation

demand) and the values (water released) from the model.

The RMSE aggregates the individual differences into a

single measure of the difference between the water released

and the irrigation demand. Finally, the mean absolute error

(MAE) was considered to examine how the operation rules

of the model (water released) are biased with the system

requirements (irrigation demand) while considering the

deficit and the surplus. The RMSE value from the HB-SA

for Golestan Dam was 6.8%, 10% and 22.1% lower than

those from to the BA, WCA and PSOA, respectively,

which demonstrates that the released water volume from

the HB-SA responds to the demands better than those from

the other methods. The MAE value for the Golestan Dam

based on the HB-SA was 27%, 28% and 32% lower than

those from the BA, WCA and PSOA, respectively. Similar

results were given for the Voshmgir Dam, which demon-

strated that the HB-SA had better performance than the

other methods.

The indexes are used to compare the capabilities of the

hybrid method with those of the other algorithms. Based on

the reliability and vulnerability values for the water supply

for the downstream demands, these indexes allow an

accurate comparison of the capabilities of the methods.

Table 4 shows the error indexes described above for the

different algorithms for both dams. The highest value of R2

is 0.93, which is the result for the water release pattern

attained using the HB-SA. In other words, the water release

pattern-based operation rule provided by the HB-SA clo-

sely matches the irrigation demand pattern with a minimal

variance and a nearly linear relationship. Moreover, higher

values of R2 were achieved for the Voshmgir Dam (0.97)

using the HB-SA, which indicates the suitability for this

algorithm for other case studies. The minimum values of

the RMSE were attained using the HB-SA for the Golestan

Dam and Voshmgir Dam (4.1 and 3.9 MCM, respectively).

The low RMSE values reflect the ability of the HB-SA to

match the temporal patterns of the downstream irrigation

demand and water release. Finally, the minimum values of

the MAE are 3.2 and 2.1 MCM for the Golestan and

Voshmgir dams, respectively, which demonstrates the

advantage of the HB-SA over the other algorithms to

derive the operation rule that minimizes the bias between

the irrigation demand and the water released. The indexes

shown in Table 5 can be defined based on the objective

functions, but the aim of the decision makers is to decrease
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the irrigation deficits and compare the results with those

from other studies; thus, these indexes are computed

without inserting them into the objective function.

Table 5 shows the performance of the different algo-

rithms based on the different evaluation indexes presented

in Sect. 4. These evaluation indexes were calculated based

on the simulation of the generated operation rules for the

optimization algorithms from 2012 to 2017 on a monthly

basis. The volumetric reliability (Table 5) ranged between

57% based on the PSOA and 94% based on the proposed

HB-SA. The volumetric reliabilities associated with the BA

and WCA are 88 and 89%, respectively, for the Golestan

Dam. Thus, the allocated water release based on the pro-

posed operation rule (HB-SA) was equal to or greater than

the required irrigation demands during the examined 5-year

period and outperformed the other algorithms. This

observation shows that the proposed HB-SA effectively

integrates the advantages of the BA and PSOA and

achieves a higher volumetric reliability. In addition, the

proposed HB-SA outperformed the recent WCA that was

applied to the same case study and achieved a 5%

improvement in the volumetric reliability. Likewise, the

proposed HB-SA achieved a volumetric reliability of 97%

for the Voshmgir Dam, which was higher than the other

algorithms. The resiliency index for the HB-SA for the

Golestan and Voshmgir dams are 56 and 55%, respectively,

which shows that the system based on the HB-SA can exit

from the drought periods earlier than other methods and

can recover more quickly than the other methods.

Although the HB-SA has the best performance in terms of

the reliability, the ultimate goal is tominimize themagnitude

of the irrigation deficit. Therefore, there is a need to examine

the vulnerability and resilience of the system. In fact, the

operation rules might tend to hedge the policy (supply less

than the full demand) to avoid severe irrigation deficits in

future events. As a result, the operation rule could accept low

reliability to enhance the resilience and vulnerability.

However, the proposedHB-SA still derived an operation rule

that was better than those of the other algorithms in terms of

the vulnerability and resilience. These observations ensured

the ability of theHB-SA to achieve the global solution for the

system’s operation.

Figure 5 shows the convergence procedure for the

examined optimization algorithms for the dam and reser-

voir system. The convergence procedure is one of the most

essential indicators for evaluating an optimization model,

especially for real-time engineering applications such as

dam and reservoir operations. It is difficult to determine the

exact reason for the divergence or convergence of the

convergence rate for the global optimal search procedure.

All of the algorithms successfully converge and reach a

particular solution, which may be the global optimum or a

non-optimal solution. All of the algorithms run several

times until convergence occurs with the convergence

parameter set for each algorithm as presented in Sects. 2.1,

2.2 and 2.3. Two main points can be considered to differ-

entiate between the performances of two different con-

vergence curves for the optimization algorithms. One index

is the number of iterations required for an algorithm to

achieve the solution, and the second is the time required to

reach the solution without considering the number of iter-

ations required. Figure 5 shows that the HB-SA converged

to the smallest value of the objective function in fewer

Table 4 Evaluation of the algorithms based on the error indexes

Correlation coefficient
�Dt: average monthly

demand �Rt: average

released water R2 ¼
Pn

i¼1 Dt � �Dtð Þ Rt � �Rtð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Dt � �Dtð Þ2 Rt � �Rtð Þ2
q

2

64

3

75

2

Root mean square error
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn

i¼1
Dt � Rtð Þ2

s

Mean absolute error
MAE ¼

Pn

i¼1 Dt�Rtð Þj j
n

Algorithm R2 RMSE MAE

Golestan Dam

HB-SA 0.93 4.1 3.2

BA 0.9 4.4 4.5

PSOA 0.65 5.3 5.1

WCA [37] 0.89 4.6 4.4

Voshmgir Dam

HB-SA 0.97 3.9 2.9

BA 0.91 4 4.1

PSOA 0.68 5.1 5

WCA [37] 0.92 4.3 4.2

Table 5 Computation of the volumetric reliability, vulnerability and

resiliency index

Index Volumetric

reliability %

Resiliency

index %

Vulnerability

index

Golestan Dam

HB-SA 94 56 11

PSOA 57 47 34

BA 88 50 10

WCA

[37]

89 49 14

Voshmgir Dam

HB-SA 96 55 10

PSOA 60 48 32

BA 89 51 10

WCA

[37]

90 50 12
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iterations than the other algorithms. In addition, the

required time for the HB-SA to achieve the minimum value

of the objective function was 75 s, whereas it was 78, 82

and 102 s for the BA, WCA, and PSO, respectively. These

results demonstrate that the proposed HB-SA can deter-

mine the optimal solution in a lower number of iterations

but also in a shorter time, which is considered an additional

benefit of the proposed HB-SA for real-time dam and

reservoir operations.

This study corroborates the previous study of Qaderi

et al. [37] and showed the benefits of the proposed HB-SA

approach over the WCA for achieving a better operating

policy for the Golestan and Voshmgir dams. The proposed

HB-SA is more complicated to adapt but is much more

effective at deriving optimal operation rules for dams and

reservoirs and could serve as and be generalized as an

alternative to the more complicated stochastic dynamic

programming (SDP) for reservoir operation. Finally, based

on the observed advantages of the proposed HB-SA, it

could be applied to several dam and reservoir water sys-

tems around the world.

6 Conclusion

This study introduced a procedure for developing a new

hybrid optimization algorithm based on the BA and PSOA,

namely, the hybrid bat–swarm algorithm (HB-SA). The

goal of this work was to present an optimal operation rule

for dam and reservoir systems that is reliable, robust and

effective at minimizing irrigation deficits. The idea behind

the developed HB-SA is to assimilate the advantages of

both the bat and particle swarm algorithms and overcome

their drawbacks when they are used in isolation. The pro-

posed HB-SA was applied to the Golestan and Voshmgir

dams in Iran. The reliability, resilience and vulnerability

indexes used to evaluate the proposed algorithm showed

that the operation rules achieved using the HB-SA

outperformed those derived using the BA and PSOA

independently. To validate the performance of the pro-

posed algorithm, its derived operation rule was compared

with those generated by applying the water cycle algorithm

(WCA) to the same case study. The results showed that the

proposed algorithm could achieve operation rules that

minimize the irrigation deficit by almost 50% compared to

those achieved using the WCA. Particularly for an inter-

mittent irrigation schedule, which is often the case for

irrigated crops downstream of dams, the proposed algo-

rithm had a faster rate of convergence, which leads to a

usable real-time optimal solutions for dams and reservoirs.

The HB-SA algorithm further improved other meta-

heuristic algorithms and had reduced computational

requirements for reaching a global optimal solution.

However, one of the limitations of this study is related to

the lack of sufficient climate conditions, so the effects of

climate on reservoir operations should be considered in

future studies.

Future research will extend the proposed HB-SA by

including the uncertainty of the stochastic process to mimic

the stochastic pattern of reservoir inflow by integrating

inflow forecasting model and uncertainty technique with

the optimization algorithm. Furthermore, the proposed HB-

SA can be extended to more be applied for complicated

dam and reservoir systems that have multiple purposes

such as hydropower generation and domestic water usage.
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stochastic dynamic programming for hydroelectric production

planning. Eur J Oper Res 262(2):586–601

12. Yin P-Y, Glover F, Laguna M, Zhu J-X (2010) Cyber Swarm

Algorithms – Improving particle swarm optimization using

adaptive memory strategies. Eur J Oper Res 201:377–389

13. Liu R, Li J, Fan J, Mu C, Jiao L (2017) A coevolutionary tech-

nique based on multi-swarm particle swarm optimization for

dynamic multi-objective optimization. Eur J Oper Res

261(3):1028–1051
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