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ABSTRACT 

Fiber-Wireless (FiWi) network is an integration of fiber optic and wireless connections 

in the same network. FiWi is needed due to rapid increment of Internet users and 

bandwidth-hungry services. Therefore, a lot of solutions have been proposed and 

created by researchers using embedded system-based hardware and off-the-shelves 

routers in order to study FiWi technology. However, off-the-shelves routers have a 

limitation on its ability to be reconfigurable and scalable to a certain extent. Hence, 

this thesis proposes the development and performance evaluation of a 

reprogrammable, fast configurable, scalable and flexible FiWi router testbed. The 

testbed is using embedded system-based hardware that can be used for lab-scale 

experiments for research and educational purposes. Raspberry Pi is used as the 

embedded system hardware to develop the router since it is reconfigurable, space 

friendly, cost-efficient and user friendly. Each router comprises of four Raspberry Pis; 

one Header Pi and three Forwarding Pis, which are connected via two Ethernet 

switches. For wireless router, an additional access point is used as the antennae of the 

router. The performance of the testbed in terms of throughput, end-to-end delay, and 

jitter for upstream and downstream are done in wireless network, fiber network and 

FiWi network. The performance of the proposed testbed is scaled up with off-the-shelf 

router and industrial grade routers in terms of throughput for each network where the 

throughput shows similar increasing trend proving that the testbed is working 

correctly. The end-to-end delay of the testbed behaves expectedly as the data size 

increases and comply with IEEE 802.15.4 routing scheme trend. Whereas the jitter 

complies the Cisco’s standard which is under 30 ms. The maximum jitter in FiWi is 

8.25 ms. A stress test on the testbed is conducted by sending two traffics of data 

simultaneously. The result shows that the end-to-end delay for two traffics is twice as 

much as single traffic as expected since router needs to process the data twice the 

amount of data. The maximum jitter of the proposed router for two traffics is 11.23 ms 

which is still under 30 ms. The scalability test is done for Wireless-Fiber-Wireless (Wi-

FiWi) network and Fiber-Wireless-Fiber (Fi-WiFi) network. The results prove that  the 

proposed testbed is suitable to be a reprogrammable, fast reconfigurable, scalable and 

flexible FiWi router testbed for research and educational purposes. 
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CHAPTER 1  

 

INTRODUCTION 

1.1 Background 

Over the years, Internet has becoming more advanced each day. Most people uses 

Internet to communicate with friends and family, for online banking, video streaming 

and online gaming. Some uses an advanced Internet applications such as Virtual 

Reality (VR) for online gaming. For better or worse, the Internet has completely 

changed the way of life for humankind. 

Having such advanced technologies cause high demands of more reliable and faster 

Internet because the services in these technologies are classified as bandwidth-

intensive. According to Yu et al. [1], the exponential growth of mobile devices and 

bandwidth-intensive services with demanding Quality of Service (QoS) have increased 

the interest of fiber-wireless (FiWi) network deployment to provide high capacity, high 

flexibility and low cost broadband access.  Hence, the needs of FiWi network to 

provide greater bandwidth allocation and mobility to the end users are necessary. 

According to Edholm’s Law of Bandwidth [2], FiWi network is an integration of 

optical fiber and wireless to provide fixed and mobile services. One of the most basic 

architecture of FiWi is using Passive Optical Network (PON). It uses passive 

components that do not require any power which reduces operation and maintenance 

cost.  

This thesis develops a scalable and fast integration testbed for FiWi that can be used 

in lab-scale experiments for research purposes and as an educational module. The 

testbed uses Raspberry Pi because it can be programmed by using Python to create a 

router. The key feature of Python for this project is its socket module which enables 

the Raspberry Pi to reliably communicate with one another via Transmission Control 

Protocol/Internet Protocol (TCP/IP). Furthermore, compared to other languages, the 

simplicity of Python makes the reconfiguration of the proposed router fast and flexible. 

Hence, making the proposed router scalable and fast integration. Each router in the 
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Figure 1 FiWi typical architecture 

testbed consists of four Raspberry Pi 3B+ and two Ethernet switches via CAT5e 

Ethernet cable.  Detail explanations about the testbed will be done in Chapter 3. 

1.1.1 Fiber Wireless Network 

FiWi is an integration of fiber optic and wireless in a network [2-6]. According to Yu 

et al. [1], a typical FiWi has a high-capacity PON that comprises of an Optical Line 

Terminal (OLT) and multiple Optical Network Units (ONU) connected to a cluster of 

wireless routers. In return, ONU is integrated with a wireless gateway that provides 

wide-area connectivity to users.  

The typical architecture of FiWi is shown in Figure 1. FiWi consists of two major parts 

in the network; optical backhaul and wireless front end. At the optical backhaul, the 

OLT at the central office (CO) forms a root connected to the optical backbone via a 

fiber link. This is to provide cloud computing services. ONU is connected to the OLT 

via 1 : N (1 : 32 or 1 : 64) splitter to form a leaf-shaped nodes. The CO is responsible 

to manage the information transmission between mobile devices with ONUs and 

acting as a gateway to other networks [7]. In the wireless end of FiWi network, mobile 

devices such as smart phones [8, 9], VR glasses [10], smart watches [11] and other 

Internet of Things (IoT) devices [10-12] have access to the Internet either via ONU or 

multi-hop wireless mesh network. 
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ONU 

ONU 
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splitter 

Gateway 
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Based on a study by Chein and Reisslein [13], one of the advantages of FiWi is that it 

provides high speed optical backhaul for a wireless mesh network. Rimal et al. [14] 

added that the network has a broadband access where it uses wide range of frequencies 

enabling a large number of data to communicate simultaneously. Whereas, mobile 

backhaul combines reliability and capacity of Ethernet-based optical backhaul with the 

wide range of coverage and flexibility of Ethernet-based wireless devices. By utilizing 

the efficacy of both optical fiber and wireless, a fast speed and low cost of  service 

areas can be achieved [15]. 

Other advantage of having FiWi technology is the combination of fiber optic and radio 

access technologies in multi-tier Radio Access Network (RAN) [16].  Radio access 

technologies will be used to deliver wireless services with high capacity, high link 

speed, and low latency [17]. The multi-tier RAN will improve the cell edge 

performance for mobile fronthaul and backhaul, resource sharing, and centralization 

of multiple standards with different frequency bands and modulation formats. 

It can be concluded that FiWi is a promising technology to support high demand of 

bandwidth and large number of users in different types of topologies and geographical 

environments. 

1.1.2 FiWi Testbed 

Over the years, research communities have been working hard to improve current 

technologies. Hence, in order to study and perform extensive performance evaluations, 

testbeds are needed. Testbed is known as a prototype for proof-of-concept of a 

technology features where further experiments can be applied [18]. There are various 

types of testbed in various platforms such as lab-scale testbed and field testbed.  

Numerous benefits of having a testbed are explained by Hurst et al. [19] Built in lab-

scale environment is portable. Which means, it can be easily packed away, securely 

stored and safely transported. The testbed can be also reused and assembled by other 

researchers in the future.  
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Furthermore, according to a study by Gong et al. [20], a testbed can have flexible 

architecture which can be connected to any devices such as multiple sensors. Despite 

of its compactness, it has powerful local computation unit. A testbed can also be 

reconfigured to different topologies. 

It can be deduced that, developing a lab-scale testbed is a promising and practical way 

of studying and experimenting a particular technology especially in FiWi for research 

and educational purposes before an actual implementation due to its simplicity, 

portability and flexibility.  

1.2 Problem Statements 

According to [16], the demand for Internet and leased line bandwidth are growing 

continuously at more than 20% per year due to more video streaming, cloud 

computing, social media and mobile data delivery. By 2020, the bandwidth demand 

will continue to grow due to an enhancement of video quality such as 8K Ultra High 

Definition (UHD) and increasing number of user subscriptions. Because of that, the 

estimated traffic in terms of mobile data and fixed systems will be 2600 times more 

than the traffic in 2010 [16]. Furthermore, this growth is accelerated by new type of 

communication services such as device-to-device (D2D) and machine-to-machine 

(M2M). Therefore, in order to ensure the users to experience the same QoS at anytime 

and anywhere while the demand is increasing, FiWi deployment has become a 

necessity because it can cover a large area and support large number of users. 

According to Ridwan et al. [21], FiWi is still an ongoing study and there are plenty of 

rooms for improvement. Therefore, a development of fast integration and scalable 

testbed is crucial to provide a platform to investigate further in order to understand 

fundamental knowledge especially for undergraduate university students, graduate 

engineers and researchers. Some of the existing testbeds consist of complicated setup 

and require a big area to install. For example, Abraha et al. [22] conducted an 

experiment consist of 64 antennas for FiWi testbed setup. This makes the testbed 

impractical to be an educational module because the installation of the antennas 

involves a whole building. Hence, fast integration is an important criterion for a testbed 



5 

 

to be an educational module so that the installation of the testbed is easy and the 

lecturers can have more time on explaining rather than focusing on testbed installation. 

Therefore, the proposed testbed is able to help students on understanding the hands-on 

knowledge of FiWi, reprogrammability of the router and medium conversions in FiWi 

in a lab-scale area. 

1.3 Research Objectives 

The aim of this thesis is to design and evaluate the performance of a fast integration 

scalable FiWi testbed. The simplicity of the testbed in terms of development and setup 

makes it practical to be an educational module in FiWi network by using Raspberry Pi 

3B+. 

The specific objectives of this thesis are as follows: 

1. Development of a reprogrammable and fast reconfigurable lab-scale FiWi 

testbed that supports the integration of fiber optic and wireless for research 

and educational purposes. 

2. Evaluate performance of proposed FiWi testbed in terms of scalability of 

more than one traffics and flexibility to a different topology; such as Fiber-

Wireless-Fiber (Fi-WiFi) and Wireless-Fiber-Wireless (Wi-FiWi). 

 

1.4 Scope of Work 

The scope of work for this thesis is shown in Figure 1.1. The system is focused on 

FiWi network because it is being used in the current global networking technology. 

Embedded system-based is chosen over software-based and industrial-based is due to 

its fast integration, scalability and suitability as an educational module especially for 

beginners. The chosen embedded system is Raspberry Pi 3B+ over Arduino and 

Banana Pi R1 because it is user friendly with low power consumption and fast 

implementation. Arduino is not chosen because it is not suitable to be used as a testbed 

for data communication field and it does not have enough processing power to handle 

the routing processes. Meanwhile, Banana Pi R1 is not chosen because the way it 

works is just by using “OpenWrt” command to start the routing process making the 
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users unable to create their own routing mechanism for research and educational 

purposes. Raspberry Pi 3B+ however, uses Python language making it more feasible 

because it has socket module, therefore, the routing mechanism can be built from 

scratch.  

In order to achieve the objectives of this thesis, a FiWi testbed is designed and 

developed by using Raspberry Pi 3B+ instead of depending on theories, analytical 

calculations or a simulation. This is because the results obtained by the testbed are 

more accurate as it includes non-linear factors such as noise and heat loss in copper. 

However, the testbed is used in the lab-scale environment with short distance 

transmissions. Hence, the noise and heat loss are negligible. The fiber optics used in 

this project are mainly for data transmissions. While the results obtained theoretically, 

analytically and simulations come with many assumptions. 

The performance of the testbed is evaluated for upstream and downstream 

communication in terms of throughput, delay and jitter. These performance parameters 

are affected by different data size which is the design parameter. The throughput of 

the testbed is then scaled and validated with industrial grade routers. The performance 

parameters are then re-evaluated for stress test and scalability test. During stress test, 

two traffics of data are sent simultaneously. Whereas, the scalability test is to test the 

performance of the testbed in other topologies which are fiber-wireless-fiber (Fi-WiFi) 

network and wireless-fiber-wireless (Wi-FiWi) network. 
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1.5 Thesis Outline 

This thesis comprises of five chapters: 

Chapter 1 begins by stating the current problem faced by the Internet. Then, the basic 

informations and advantages of FiWi network and testbed are presented in this chapter. 

The problem statements are discussed, and the objectives are outlined. Finally, Chapter 

1 ends by explaining the scope of work to achieve project objectives. 

Chapter 2 will begin by explaining in detail about the existing testbed architecture done 

by other researchers. Then, the routing media in terms of fiber, wireless and fiber-

wireless that have been used in real life will be reviewed. The core subtopic in this 

chapter is FiWi. Hence, in-depth study on the theory of FiWi will be discussed in this 

chapter. Next, a review on the advantages and disadvantages of the existing router 
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testbeds which are software-based router, commercial-based router and embedded 

system-based router will be discussed in this chapter. This chapter ends by 

summarizing the literature review. 

Chapter 3 will explain about the methodology of this project. Firstly, this chapter will 

explain about the proposed testbed architecture. The explanation includes router 

architecture, network environment which is the topology and the default system 

parameter. Then, the hardware setup and each of the components will be explained in 

details. The explanation about programming environment for the testbed will include 

the algorithm of the testbed, testbed scalability and how the testbed can be an 

educational module. This chapter also explains on the testbed parameters. Finally, will 

be ended by summarizing the whole chapter. 

Chapter 4 will explain about the results and performance evaluation of the testbed for 

wireless transmission, fiber transmission and FiWi transmission. Firstly, the results in 

terms of throughput will be validated for each type of the transmission. Then, the 

explanation continues with the presentation of delay, throughput and jitter for each 

type of transmission. The performance for the stress test and scalability test will also 

be included. This chapter will be ended with the summary on the performance of the 

testbed. 

Finally, Chapter 5 will present the conclusion and future work for this thesis. This 

chapter will be concluding the whole project and will describe on advantages and 

disadvantages of the testbed. The challenges and limitations while doing this project 

will be addressed in this chapter as well as the recommendations for future work to 

improvise the testbed. 
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CHAPTER 2  

 

LITERATURE REVIEW 

2.1 Introduction 

A general information of FiWi has been briefly discussed in Chapter 1. According to 

Tornatore et al. [16], FiWi network architecture changes the future of Internet 

networking structure due to its capability to feed the bandwidth-hungry demand as 

well as the mobility and flexibility offered by wireless. This chapter explains in detail 

about FiWi network. However, FiWi still has a lot of rooms for improvements for 

future communication technologies. Therefore, numerous studies in various testbed 

architectures such as fiber, wireless, and FiWi have been studied thoroughly by many 

researchers. This chapter focuses on literature review of previous router testbeds such 

as software-based router, commercial-based router and embedded system-based 

router. 

This chapter begins with a detail explanation of FiWi network in Section 2.2. Section 

2.3 discusses on testbed architectures, such as fiber, wireless and FiWi. Then, Section 

2.4 discuses on types of router testbeds, such as software-based router, commercial-

based router and embedded system-based router. Finally, Section 2.5 summarizes this 

chapter. 

2.2 FiWi Network 

According to Martin Maier and Navid Ghazisaidi, FiWi network is a combination of 

fiber and wireless in the same network [23, 24]. FiWi provides cost effectiveness, 

robustness, flexibility, high capacity, reliability and self-organization [25-27]. A 

typical FiWi network consists of PON which comprises of OLT and ONU that are 

connected to wireless routers as shown in Figure 2.1. 

In order to provide new high-speed services, PON has become one of the solutions to 

overcome bandwidth limitation of the last mile bottleneck access technologies as well 
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as increasing demand of high-spectrum bandwidth [28]. Currently, Time Division 

Multiplexing-based PON (TDM-PON) such as Gigabit Ethernet PON (GE-PON) and 

Gigabit-capable PON (G-PON) are widely used in different countries [28, 29]. Until 

today, the demand for high bandwidth is increasing rapidly due to advanced 

multimedia applications such as online gaming and video-on-demand. Hence, 

telecommunication groups such as Full Service Access Network (FSAN), Institute of 

Electrical and Electronic Engineers (IEEE) and International Telecommunication 

Union (ITU) have proposed Next Generation PON (NG-PON). NG-PON has two 

stages; NG-PON1 and NG-PON2. NG-PON1 is known as the midterm next generation 

which provides 10 Gbps for upstream and downstream. Whereas, NG-PON2 is a long-

term next generation which provides not less than 40 Gbps [28, 30-32]. Moreover, 

according to [28], recent studies have been carried out on NG-PON2 enabling 

technologies such as 40 G TDM-PON and Wavelength Division Multiplexed PON 

(WDM-PON), Time and Wavelength Division Multiplexed PON (TWDM-PON) and 

Orthogonal Frequency Division Multiplexing PON (OFDM-PON). Amongst all these 

technologies, TWDM-PON has been selected as the best choice for NG-PON2 due to 

its capability to support backward compatibility, flexibility and static sharing [28, 33]. 

By 2020, NG-PON2 is expected to provide 128 Gbps to 500 Gbps of bandwidth, 

supports from 256 to 1024 ONUs, 20 km to 40 km extended passive reach option for 

the working path, low energy consumption, low capital and operational expenditures 

and coexistence with G-PON. 

PON is a Point-to-Multipoint (P2MP) optical fiber network with no active elements in 

the signal’s path which connects OLT with ONUs via 1: N optical splitters. PON 

typically uses tree topology to maximize the coverage, allow flexibility, and minimize 

the number of network splitting. Hence, it reduces the optical power loss and increases 

optical reach [28].  Moreover, the deployment of PON technology in access network 

provides end-to-end transparency, less processing and is not affected by electrical 

noises [28]. 

 

At the wireless side of FiWi network, it provides broadband services for not only 

mobile users but also fixed subscribers. Wireless technology in FiWi is necessary due 

to various limitations such as geographical constraints, economical balance, provider’s 
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strategy, and damage situation in case of disasters that cause optical fiber to not be 

able to be deployed [34]. According to Van et al. [35], many studies on FiWi 

architectural have been done and the most widely considered FiWi network 

architecture is based on PON and wireless networking technologies such as Wireless 

Local Area Network (WLAN), World Interoperability for Microwave Access 

(WiMAX), Long Term Evolution (LTE), and Wireless Mesh Network (WMN). 

According to Maier and Ghazisaidi [23], WLANs based on IEEE 802.11 have become 

very popular in providing different data services. In general WLAN architecture, an 

Access Point (AP) is connected to the internet or other WLANs through a distribution 

system (DS). In this architecture, wireless clients communicate with their associated 

AP using the medium access control (MAC) protocols defined in the IEEE 802.11 

specifications [36-38]. The IEEE 802.11 MAC layer deploys the distributed 

coordination function (DCF) as a default access technique. In this contention-based 

scheme, wireless clients associated with the AP use their air interfaces for sensing the 

channel availability. If the channel is idle, the source sends its data to destination 

through the associated AP. If more than one wireless client tries to access the channel 

simultaneously, a collision occurs. Hence, carrier sense multiple access/collision 

avoidance (CSMA/CA) access protocol is introduced in this technology to avoid 

collisions. 

The initial IEEE 802.16 WiMAX standard was established in the frequency band from 

10 GHz to 66 GHz providing up to 75 Mbps line-of-sight (LOS) connections for both 

point-to-multipoint and mesh nodes [23]. The WiMAX physical (PHY) layer supports 

four different modulation schemes; wireless metropolitan area network-single carrier 

(WMAN-SC), WMAN-single carrier access (WMAN-SCA), WMAN-orthogonal 

frequency division multiplexing (WMAN-OFDM) and WMAN-orthogonal frequency 

division multiple access (WMAN-OFDMA). WMAN-SC is designed for the 

frequency band from 10 GHz to 66 GHz, whereas other modulation schemes are used 

for the frequency band from 2 GHz to 11 GHz. Additionally, WiMAX PHY layer can 

transfer data bidirectionally by using time division duplex (TDD) or frequency 

division duplex (FDD). Meanwhile, WiMAX MAC layer is responsible for assigning 
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connection identifiers (CIDs) as well as allocating bandwidth to subscriber stations 

[23]. 

LTE has been defined by the third generation partnership project (3GPP) as fourth 

generation (4G) cellular network technology for high-speed wireless end users [38-

40]. The first amendment of LTE provides a transmission rate of 300 Mbps and 

operates in both TDD and FDD modes [38]. LTE operators are given the flexibility to 

define the size of bandwidth, ranging from below 5 MHz to 20 MHz [23]. LTE aims at 

providing a smooth evolution from 3GPP to 3GPP2 cellular networks such as wide-

band code division multiple access/high-speed packet access (WCDMA/HSPA) and 

code division multiple access (CDMA). Typically, OFDM is used in the downlink 

radio transmission of LTE networks. Moreover, LTE supports advanced multi-antenna 

schemes such as multiple input multiple output (MIMO) antennas, transmit diversity, 

spatial multiplexing and beamforming. 

WMN has been envisioned to enhance flexibility, increases reliability, and improve 

the performance of wireless networks [41, 42]. There are two main approaches in the 

design of wireless networks; infrastructure networks and infrastructure-less networks 

[23]. In infrastructure networks, the wireless clients rely on an underlying 

infrastructure for communication via a central control point such as AP. Global system 

for mobile communications (GSM) and universal mobile telecommunications system 

(UMTS) are the typical examples for infrastructure wireless networks. On the other 

hand, in infrastructure-less networks, wireless clients communicate with one another 

directly. It is also known as mobile ad-hoc networks (MANETs) which enable wireless 

clients to act as routers [23]. The convergence of these two approaches leads to WMN. 

WMNs employ multihop communications to forward traffic to and from wired DS. 

WMNs are expected to be widely deployed due to their ability to provide ubiquity, 

convenience, cost-efficiency, and simplicity [23, 41, 42]. 

These wireless networking technologies can be implemented by using Radio-over-

Fiber (RoF) [43]. According to Rajpal and Goyal [34], RoF is potential to be the 

backbone of the wireless access network and it has gained significant momentum in 

the last decade as the last-mile access scheme. RoF is an analog optical link to transport 
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data over optical fiber by transmitting modulated radio frequency (RF) signals to and 

from CO to base station or Remote Antenna Unit (RAU) [44-46]. This modulation can 

be done directly with the radio signal or at an intermediate frequency. In other words, 

RoF transport information over optical fiber by modulating light pulses with the radio 

signals [34]. RoF serves as a high-speed WLAN. The frequencies of RoF systems span 

a wide range which is in GHz region. Most of signal processing including encoding, 

multiplexing, RF generation, and modulation are carried out by CO and shared with 

several base stations, hence making it easy to install and maintain [34, 43]. According 

to Singh and Singh [43], RoF has several applications other than WLAN, such as 

Video Distribution Systems (VDS), satellite control, cellular networks, vehicle 

communication, and mobile broadband services. 

Another approach of wireless technology is by using Radio-and-Fiber (R&F) 

technology. R&F is an improvement of RoF which uses two MAC protocols that make 

simpler transportation of data from wireless to optical and vice versa. Besides, R&F 

has also distributed processing with storage capabilities and can perform additional 

functions. It reduces the functionality at CO and the task can be managed at ONU. 

Compared to RoF, R&F has better QoS, less propagation and larger network coverage 

[24, 47]. In this thesis, R&F is used in the proposed testbed because the wireless and 

fiber links are using different MAC protocols [21, 48, 49]. R&F provides extended 

coverage of the network without having to install optical backhaul which has limited 

length and size of fibers, making the testbed to be cost-efficient. 

2.3 Testbed Architecture 

Testbed is an equipment or setup which is used to test a new type of technology in 

order to prove a new concept or to enhance the current technology. There are two types 

of testbed; field testbed and lab-scale testbed. Field testbed is used in a wide scale area 

such as in an industrial area that requires heavy duty equipment and setup. Whereas, 

lab-scale testbed is used in a lab which uses small and simple equipment such as 

microcontroller and microprocessors. Testbed can be implemented for various 

architectures and setups in order to operate. Hence, this section explains testbed 

architectures in three different media; fiber, wireless and FiWi. Fiber architectures 
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such as PON is used in a testbed in order to provide very low latency, reliability, and 

robustness for the data transmission in a large amount of bandwidth to achieve a great 

performance. Whereas, wireless architectures such as WiFi is used in order to provide 

mobility and scalability on a testbed so that it can be implemented in wide area. The 

summary of these architectures are tabulated at the end of this section. 

2.3.1 Fiber 

Szymanski and Rezaee [50] proposed a testbed as a proof-of-concept of Guarantee-

Rate (GR) by using Field-Programmable Gate Array (FPGA) and PON. The testbed 

comprises of two planes; control plane and forwarding plane. At the control plane, 

SDN is implemented to control 128 traffic flows through the packet switches. Whereas 

at the forwarding plane, it consists of eight controllers and Altera Cyclone IV FPGA 

as the packet switches. This testbed architecture reduces the end-to-end delay between 

clients. The control plane has the ability to bypass Layer 3 (L3) IP routers using a 

Layer 2 (L2) underlay which improves the energy efficiency significantly. The FPGA 

controller can handle routers and switches with aggregate data rates in hundreds of 

Terabits per second (Tbps). 

Yang et al. [51] developed a testbed in order to analyse the performance of software 

defined optical access network (SDOAN) architecture for remote unified control based 

on OpenFlow-enabled PON. The testbed comprises of two planes; control plane and 

data plane. The control plane is where OpenFlow is installed on a server computer to 

remotely control the traffic flows on the data plane. The data plane is where PON is 

deployed to transport all the data from a source to a destination. This architecture is 

designed to allocate the network bandwidth resources and detect the status of the 

network flows in real time flexibly and efficiently. The control plane and data plane 

communicate with one another via Reconfigurable Optical Add-Drop Multiplexers 

(ROADMs). SDOAN enhances the resource utilization and QoS guarantee of each 

user effectively through unified control plane and reduce operating expenses by remote 

interaction and operation. Besides, the separation of control and data plane has a 

positive impact on the network because if there is any broken links on the data plane, 

it will not affect the control plane. Also, if the control plane is broken, it will not affect 
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the data plane. Hence, this type of architecture saves the cost of maintaining the 

network. Another work by Yang et al. [52] has similar architecture with [51]. Instead 

of using server computers to enable OpenFlow, [52] used netFPGA at the control 

plane. However, netFPGA shows lower performance than server computers as 

netFPGA has lower specifications. Hence, the control and management on the network 

is less effective. 

Okamoto et al. [53] proposed a programmable OLT (P-OLT) and programmable ONU 

(P-ONU) testbed. The aim of this work is to analyse the performance of the proposed 

P-OLT and P-ONU in terms of throughput and packet loss rate. The architecture of 

this testbed comprises of a proxy server, P-OLT, P-ONU, a server and a client. The 

proxy server is placed at the control plane of the testbed to be used as the buffer for 

the data, control the transmission timing periodically and provides traffic shaping of 

burst traffic. P-OLT and P-ONU are programmed by using FPGA. Whereas the server 

and client act as the end-to-end data transmission nodes. The advantage of this 

architecture is that it can be implemented for a large-scale testbed. The results of this 

testbed show that the packet loss rate is consistently at 0% even when the number of 

ONU increases. However, the throughput decreases as the number of ONU increases. 

Despite of having such advantages, FPGA is complex because it has a lot of 

configurable logic blocks where each of them comprises of many logic gates and look 

up tables. Due to this complexity, FPGA requires a lot of power consumptions 

compared to other embedded system hardware like Raspberry Pi. Furthermore, FPGA 

is also complex in terms of programming. For example, if the user wants to create a 

delay, the user needs to use arithmetic functions first to define the prescaler in order to 

slow down the default clock. Moreover, FPGA does not store the program when it 

turns off. This means that, once FPGA is switched off, all the programs and functions 

defined by the user will be erased. This makes FPGA takes longer boot time and takes 

longer time to do the experiments. Furthermore, FPGA needs an external flash memory 

in order to overcome this problem which makes it further cost-inefficient. It is also not 

durable since it is sensitive to electrostatic on human body.  

Luis et al. [54] proposed a Spatial Division Multiplexing (SDM) network testbed that 

consists of three nodes that are connected together via 19-core multicore fibers. The 



16 

 

nodes communicate with each other via ROADM. This work is to provide performance 

evaluations for the proposed testbed. The results of the testbed show that SDM network 

can provide ultra-high capacity links and high-quality connections even when packet 

and circuit switching are in the same network. 

In 2018, Azofra et al. [55] created a testbed with fiber medium to evaluate the 

performance of Software Defined Network (SDN)-based GPON. The testbed provides 

fast, efficient and accurate QoS management by using Raspberry Pi. It comprises of 

an OLT, two fiber splitters and 5 km standard Single Mode Fiber (SMF). The OLT has 

two main components, which are one L3 model Optical Network Terminal (ONT) 

which includes router functionalities and comply with International Telegraph Union 

– Telecommunication Standardization Sector (ITU-T) G.9894.x and G.988 standards 

and one Raspberry Pi to enable OpenFlow. Hence, the performance of the network can 

be improved by using this testbed because the user can freely manage and control the 

traffic flows. 

Based on the literature review in this section, it can be found that most authors use 

FPGA and SDN-based control plane as the proposed testbed to enhance the 

performance of PON. Despite of having improvements such as programmability and 

flexibility, as well as fast, and efficient, the performance of FPGA and SDN-based 

control plane are limited compared to industrial grade hardware or server computers 

due to their limited specifications. Compared to FPGA, SDN-based control plane such 

as Raspberry Pi is simpler, fast reconfigurable and implementation, cost efficient, 

lower power consumption and space-friendly. This is because Python is used as the 

main the programming language in Raspberry Pi because the user does not require to 

do any complex mathematical or arithmetic expressions just to execute a simple 

function such as delay. It is fast reconfigurable and fast implementations because the 

user does not require to reprogram it when it is turned off. All the programs have been 

stored and can be automatically executed when it is turned on. It is more cost-efficient 

than FPGA because it can execute the same functions and program as FPGA at a lower 

price. Unlike FPGA, Raspberry Pi requires low power consumption to boot because it 

can also be powered by using power bank. Lastly, Raspberry Pi has more durability 

since it is not as sensitive to electrostatic as FPGA. Hence, an extensive experiment 
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can be done in various environments either it is indoor or outdoor. With that, it can be 

concluded that Raspberry Pi is more practical and simpler to be used as a testbed than 

FPGA. 

2.3.2 Wireless 

In 2015, Singh and Talasila [56] proposed a wireless testbed to provide comparative 

analysis of different routing protocols which are Better Approach to Mobile Ad hoc 

Networking (BATMAN)-advance and Hybrid Wireless Mesh Network (HWMN) in 

WSN. There are five TP-LINK WR1043ND routers that used in this testbed. TP-LINK 

WR1043ND routers are high speed gigabit wireless routers that capable of achieving 

up to 450 Mbps when operated at 2.4 GHz. These routers also have three antennas to 

provide the users with larger coverage and stronger wireless signals. Hence, more 

accurate results can be achieved. 

In 2016, Prusty et al. [57] proposed a testbed to analyse the link quality in packet 

routing for Wireless Ad-hoc Sensor Network (WASN). The testbed comprises three 

types of hardware which are NI WSN-9791 Ethernet gateway, NI WSN-3202 

programmable analogue input node, and NI WSN-3212 programmable thermocouple 

input node. NI WSN-9791 Ethernet gateway is to coordinate the communication 

between distributed WSN nodes and host controller or base station. NI WSN-3202 

programmable analogue input node acts as the wireless route to transmit packets from 

other nodes to the gateway. NI WSN-3212 programmable thermocouple is a 

temperature sensor where it sends the temperature data to the wireless router. The 

testbed is also useful in understanding of the characteristics and behaviour of low-

power links in WASN to help designing a suitable protocol. 

Barolli et al. [58] proposed a wireless testbed to analyse the performance of 

OpenWRT-based testbed for Content Centric Network (CCN) by using Optimised 

Link State Routing (OLSR). In this testbed, Raspberry Pis are used as the wireless 

nodes. OpenWRT command is used on the Raspberry Pis for them to communicate 

with one another. The advantage of using Raspberry as the testbed is that since it 

operates on an open source kernel, it is reconfigurable because it can be embedded 
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with various algorithms. However, Raspberry Pi only suitable to be implemented in a 

small-scale experiment due to its small bandwidth and limited specifications. 

Zhang et al. [59] proposed a wireless testbed by implementing Multichannel 

Opportunistic Routing (MOR) in order to improve the robustness of WS network to 

interference. In this testbed, 16 Zigbees are used as the wireless nodes to implement 

MOR. Zigbee is a low-cost and low-power wireless hardware. However, Zigbee has 

low-rate data transmission which only suitable for a small scale testbed such as in a 

lab. 

Jecan et al. [60] proposed a testbed to evaluate the performance for industrial WSN 

dual-standards which are ISA100.1a and WirelessHART in star and mesh topologies. 

There are two types of hardware for the testbed; VR950 gateway and VS210 wireless 

sensor nodes. VR950 gateway is to enable the ISA100.1a and WirelessHART 

standards. VR950 is widely used in industrial field such as oil and gas, mining, and 

manufacturing where safety, security and reliability are the priorities. Whereas the 

VS210 wireless sensor nodes are to receive from other temperature, humidity and 

pressure sensors wirelessly. Since the experiment is for industrial WSN, VS210 has a 

short circuit protection for all input and output ports. In mesh topology, there are 100 

wireless sensor nodes, whereas, in star topology, there are 50 wireless sensor nodes. 

By implementing dual-standards in one testbed, a better overall performance of 

industrial WSN can be achieved. 

In 2019, Pakzad et al. [61] proposed a wireless testbed to provide performance 

comparison between two widely used protocols in WMN which are OLSR and 

BATMAN. The testbed comprises of 37 wireless nodes which are equipped with Intel 

core i7-2600 processor, 4 GB RAM, 240 GB SSD and two wireless interfaces with 

three antennas. The nodes were arranged in a 1 m grid covering 90 m2 area. USRP is 

placed between the nodes to generate interference. The advantage of this architecture 

is that it is built in a secluded area where no other interference other than from USRP. 

Hence, the results obtained are accurate. 



19 

 

Based on the literature review in this section, we can find that most authors used high 

specifications for wireless nodes and routers in order to achieve robust and efficient 

results. There are only two authors who proposed a small scale testbed which are Jecan 

et al. [60] and Barolli et al. [58]. 

2.3.3 Fiber-Wireless 

In 2016, Nguyen and Cheriet [62] proposed a work in order to provide a solution for 

rearchitecting a telecommunication company’s CO. This solution offers services in a 

smart community by using SDN. The testbed has three main components. The first 

one is a core switching platform that provides optical multiservice to link the Smart 

Residence to Internet providers, as well as to international partners. This switching 

platform is integrated into the smart edge that makes it programmable by implementing 

SDN functions such as dynamic routing and traffic filtering. The second component is 

an optical access platform that consists of virtual home gateways and optical 

aggregation switches that link smart home and WiFi APs to the core switch. The third 

component is a set of telco-grade blade servers that provide various telecommunication 

services as well as monitoring, power management, and emergency alerting. Based on 

the monitoring services, a database containing user, power, and resource data, 

analytical services are developed to extract the information, then, optimizes the 

resource and service provisioning. 

Xu et al. [63] proposed a work to compare the performances of filter-bank multicarrier 

(FBMC) and OFDM with and without centralized pre-equalization in a FiWi 

integrated mobile fronthaul (MFH) network. The testbed comprises of one baseband 

unit (BBU) pool, one RAU, two user equipment (UE) terminals, distributed feedback 

(DFB) laser that is used as downlink light source, and Tektronik 7122C arbitrary 

waveform generator (AWG). 

In 2017, Rimal et al. [64] provide an enhancement for capacity-centric FiWi broadband 

access networks by implementing cloudlet-aware resource management scheme. The 

testbed comprises of Sun Telecom GE8100 as the OLT, four Sun Telecom GE8200 as 

the ONUs, WLAN access point, Dell Optiplex 9020 desktop as the cloud server and 
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Dell Inspiron 3521 laptop as the wireless edge device. However, in 2018, Rimal et al. 

[2] proposed an improvement by designing a capacity-centric FiWi broadband access 

networks enhanced with edge computing to guarantee low end-to-end latency. The 

testbed hardware are the same as before, but instead of using cloudlet server and 

WLAN access point, the author used Ubuntu 14.04 Desktop as the Edge Cloud and 

ZyXEL NWA570N wireless access point. Ubuntu 14.04 is a Linux-based Operating 

System (OS) that enables the user to freely reconfigure the network because it is an 

open source OS. ZyXEL NWA570N has 300 Mbps of throughput and can cover wide 

range of wireless communication. 

In 2018, Ridwan et al. [21] conducted an experiment in order to achieve two objectives 

which are to study the performance evaluation of the upstream FiWi testbed 

transmission in terms of throughput, transmission time, and jitter and also its 

reconfigurability. The testbed comprises of four Universal Software Radio Peripheral 

(USRP) 2922, 1:4 splitter, optical to electrical (E/O) converters, electrical to optical 

(O/E) converters, and fiber optics. USRP are used as OLT and ONU as well as due to 

their reconfigurability. USRP wireless signals can reach up to 100 m when operated at 

30 dB output power. 

Liu et al. [65] proposed a FiWi testbed to provide performance evaluation of integrated 

heterogenous networking scheme for multi-access networks that uses network 

virtualization to achieve the dynamic orchestration of the network, storage and 

computing resource. This testbed has two planes; control plane and physical 

infrastructure plane or data plane. At the control plane, MEC server is used to install 

OpenFlow in order to control and manage the data flow in the data plane. SDN 

switches are used to enable control plane and data plane communicate 

intercommunication. At the data plane, the SDN switches acting as the routers are 

connected with one another via 20 km and 40 km fiber optics. One of the routers is 

connected with AP to enable the wireless access to the mobile devices, in this case, 

laptops. 

Turk and Zeydan [66] conducted an experiment to introduce a guidance framework to 

Mobile Network Operators (MNOs) so that they can enable converged fixed and 
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mobile services with customized QoS support. The main hardware in this testbed are 

Nokia 7360 ISAM FX as the OLT, three Nokia 7750 SR-7 as the routers and security 

gateway, radio access network (RAN) to provide cellular services and Nokia 7705 

SAR-A cell router. The routers for this testbed support from 10 Gbps to 2 Tbps of 

bandwidth as well as hierarchical QoS (HQoS). 

Lastly, work by Alfadhli et al. [67] proposed a FiWi testbed that provides an 

experimental quantitative latency analysis of different low function split options at the 

fronthaul for ultra-reliable low latency communications (URLLC). The testbed 

comprises of two computers that act as a server and a client, E/O and O/E converters, 

USRP-b210 to generate interference, AWG to produce 1 GHz bandwidth OFDM 

signal at a carrier frequency of 1 GHz, photodiode and laser diode to produce light 

sources. USRP-b210 is an open and reprogrammable software defined radio that allow 

the user to immediately begin developing with GNU radio and develop a prototype 

with high performance. 

Based on the literature review in this section, we can find that there are various field 

of studies involving FiWi from small scale testbed to an industrial scale testbed, 

proving that FiWi has a lot of rooms for improvements. The advantage of small scale 

testbed is that it is cost efficient, space friendly and able to produce results close to 

industrial scale testbed. 

To conclude this section, Table 2.1 summarizes all of the testbed architectures 

including the objective of each work, the testbed details and the media used in the 

testbed. 
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Table 2.1 Testbed architecture summary 

Title Objective Testbed details Medium 

An FPGA 

Controller for 

Deterministic 

Guaranteed-Rate 

Optical Packet 

Switching, 2015 

[50] 

- To provide a proof-of-

concept GR testbed by 

using FPGA and PON. 

- The forwarding plane of 

the testbed consists of 

eight controllers and 

Altera Cyclone IV FPGA 

as the packet switches. 

- SDN control plane of the 

testbed routes 128 traffic 

flows through the packet 

switches. 

Fiber 

Experimental 

Demonstration 

of Remote 

Unified Control 

for OpenFlow-

Based Software-

Defined Optical 

Access 

Networks, 2016 

[51] 

- To analyse the 

performance of SDOAN) 

architecture for remote 

unified control based on 

OpenFlow-enabled PON 

- The testbed comprises of 

two planes; control plane 

and data plane 

- In the control plane, 

OpenFlow is installed in 

the servers 

- In the data plane, PON is 

deployed. 

- Control plane and data 

plane communicate with 

each other by using four 

(ROADMs) 

Fiber 

SUDOI: 

Software 

Defined 

Networking for 

Ubiquitous Data 

Center Optical 

Interconnection, 

2016 [52] 

- To study the feasibility 

and efficiency of the 

proposed architecture by 

using the testbed with 

OpenFlow-enabled optical 

nodes. 

- The testbed comprises of 

two layers; control layer 

and data layer. 

- In control plane, 

OpenFlow is installed in 

netFPGA 

- In data plane, PON is 

deployed and can 

communicate with control 

plane via ROADM. 

Fiber 
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Title Objective Testbed details Medium 

Logical Optical 

Line Terminal 

Technologies 

Towards 

Flexible And 

Highly Reliable 

Metro And 

Access-

Integrated 

Networks, 2017 

[53] 

- To analyse the 

performance of P-OLT 

and P-ONU. 

- Hardware used in this 

testbed: 

 1) proxy server – used as 

the buffer for the data, 

controls the transmission 

timing periodically, and 

provides traffic shaping of 

burst traffic 

 2) P-OLT and P-ONU 

 3) Server and client 

Fiber 

Demonstration 

of an SDM 

Network 

Testbed for Joint 

Spatial Circuit 

and Packet 

Switching, 2018 

[54] 

- To provide performance 

evaluations for the 

proposed testbed. 

- SDM network testbed 

consists of three nodes 

that are connected 

together via 19-core 

multicore fibers. 

- The nodes communicate 

with each other via 

ROADM. 

Fiber  

Implementation 

of a Testbed to 

Analysis a SDN 

Based GPON, 

2018 [55] 

- To evaluate the 

performance of SDN-

based GPON to provide 

fast, efficient and accurate 

QoS management. 

- The testbed comprises of: 

 1) OLT – consists of one 

L3 model ONT and one 

Raspberry Pi to enable 

OpenFlow 

 2) two splitters 

 3) 5 km standard SMF 

Fiber 
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Title Objective Testbed details Medium 

A Practical 

Evaluation for 

Routing 

Performance of 

BATMAN-ADV 

And HWMN in 

A Wireless 

Mesh Network 

Testbed, 2015 

[56] 

- To provide a comparative 

analysis of different 

routing protocols which 

are BATMAN-advance 

and HWSN in WMN. 

- Five TP LINK 

WR1043ND routers are 

used for BATMAN-

advance and HWSN 

experimental setup. 

Wireless 

Testbed for Link 

Quality 

Assessment in 

Wireless Ad-hoc 

Sensor Network, 

2016 [57] 

- To analyse the link quality 

in packet routing for 

WASN by conducting an 

experiment on a testbed. 

- The testbed consists of 

three types of hardware: 

 1) NI WSN-9791 Ethernet 

Gateway – to coordinate 

the communication 

between distribute WSN 

nodes and host controller 

or base station.  

 2) NI WSN-3202 ±10 V 

Programmable Analog 

input node – act as the 

wireless router to transmit 

packets from other nodes 

to the gateway 

 3) NI WSN-3212 

Programmable 

Thermocouple input node 

– sense the temperature, 

then send the data to the 

wireless router. 

Wireless 
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Title Objective Testbed details Medium 

Experimental 

Results of A 

Raspberry Pi 

and OLSR-

Based Wireless 

Content Centric 

Network 

Testbed 

Considering 

OpenWRT OS, 

2016 [58] 

- To analyse the 

performance of 

OpenWRT-based testbed 

for CCN by using OSLR 

protocol.  

- Raspberry Pis are used as 

the wireless nodes. 

OpenWRT is used to 

communicate with one 

another. 

Wireless 

MOR: 

Multichannel 

Opportunistic 

Routing for 

Wireless Sensor 

Networks, 2017 

[59] 

- Implementing MOR to 

improve the robustness of 

WSN network to 

interference. 

- 16 Zigbees are used as the 

wireless nodes to 

implement MOR. 

Wireless 

A Dual-Standard 

Solution for 

Industrial 

Wireless Sensor 

Network 

Deployment: 

Experimental 

Testbed and 

Performance 

Evaluation, 2018 

[60] 

- To evaluate the 

performance for a dual 

standard Industrial WSN 

by employing star and 

mesh topology. 

- The testbed consists of 

two types of hardware;  

 1) VR950 Gateway – to 

enables the ISA100.1a 

and WirelessHART 

standards. 

 2) VS210 wireless sensor 

nodes – to receive data 

from temperature, 

humidity and pressure 

sensors wirelessly. 

- In mesh network, there are 

100 wireless sensor nodes, 

whereas, star network has 

50 wireless sensor nodes. 

Wireless 
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Title Objective Testbed details Medium 

R2Lab Testbed 

Evaluation for 

Wireless Mesh 

Network 

Experiments, 

2019 [61] 

- To provide a comparison 

between two widely used 

protocols in WMN; OLSR 

and BATMAN 

- Using 37 wireless nodes 

which are equipped with: 

 1) Intel Core i7-2600 

processors, 4 GB RAM, 

240 GB  SSD. 

 2) Two wireless interfaces 

with 3 antennas each; 

Atheros 802.11 93xx 

a/b/g/n and Intel 5300 

chips. 

- The distance for the 

wireless nodes are 1 m 

from each other in a 90 m² 

area. 

- Universal Software Radio 

Peripheral (USRP) is used 

to generate interference. 

Wireless 

Virtual Edge-

Based Smart 

Community 

Network 

Management. 

IEEE Internet 

Computing, 

2016 [62] 

- To provide a solution for 

rearchitecting a 

telecommunication 

company’s CO to offer 

services in a smart 

community by using 

virtual network function 

elements which is SDN. 

- The testbed has three 

components: 

 1) a core switching 

platform is implemented 

with SDN functions 

 2) An optical access 

platform consists of 

virtual home gateways 

and optical aggregation 

switches linking smart 

home and WiFi APs to the 

core switch. 

 3) A set of telco-grade 

blade servers to provide 

various 

telecommunication 

services 

FiWi 
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Title Objective Testbed details Medium 

FBMC in Next-

Generation 

Mobile 

Fronthaul 

Networks With 

Centralized Pre-

Equalization. 

IEEE Photonics 

Technology 

Letters, 2016 

[63] 

- To compare the 

performances of FBMC as 

well as OFDM with and 

without centralized pre-

equalization in a fiber-

wireless integrated MFH 

network. 

- The testbed comprises of: 

 1) one BBU pool 

 2) one RAU 

 3) two UE terminals  

 4) DFB laser is used as 

DL light source 

 5) Tektronik 7122C AWG 

FiWi 

Cloudlet 

Enhanced Fiber-

Wireless Access 

Networks for 

Mobile-Edge 

Computing, 

2017 [64] 

- To provide an 

enhancement for capacity-

centric FiWi broadband 

access networks by 

implementing cloudlet-

aware resource 

management scheme. 

- The testbed comprises of: 

 1) Sun Telecom GE8100 

as the OLT 

 2) four Sun Telecom 

GE8200 as the ONUs 

 3) WLAN access point 

 4) Dell Optiplex 9020 

Desktop as the cloudlet 

server 

 5) Dell Inspiron 3521 

laptop as the wireless 

edge device 

FiWi 
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Title Objective Testbed details Medium 

Experimental 

Testbed for 

Edge Computing 

in Fiber-

Wireless 

Broadband 

Access 

Networks, 2018 

[2] 

- To design capacity-centric 

FiWi broadband access 

networks enhanced with 

edge computing to 

guarantee low end-to-end 

latency. 

- The testbed comprises of: 

 1) Sun Telecom GE8100 

as the OLT 

 2) four Sun Telecom 

GE8200 as the ONUs 

 3) ZyXEL NWA570N 

wireless access point 

 4) Ubuntu 14.04 Desktop 

as the Edge Cloud 

 5) Dell Inspiron 3521 

laptop as the wireless 

edge device 

FiWi 

Feasibility Study 

of a 

Reconfigurable 

Fiber-Wireless 

Testbed Using 

Universal 

Software Radio 

Peripheral, 2018 

[21] 

- To study the performance 

evaluation of the upstream 

FiWi testbed transmission 

in terms of throughput, 

transmission time, and 

jitter. 

- To test the testbed 

reconfigurability 

- The testbed comprises of: 

 1) four USRP 2922 as the 

OLT and ONU 

 2) 1:4 splitter 

 3) O/E and O/E converters 

 4) fiber optic 

FiWi 

Performance 

Evaluation of 

Integrated 

Multi-Access 

Edge Computing 

And Fiber-

Wireless Access 

Networks, 2018 

[65] 

- To provide performance 

evaluation of integrated 

heterogenous networking 

scheme for multi-access 

edge computing and FiWi 

access networks that uses 

network virtualization to 

achieve the dynamic 

orchestration of the 

network, storage and 

computing resource. 

- The testbed comprises of: 

 1) 20 km and 40 km fiber 

optics 

 2) core switch 

 3) three SDN switches 

with optical and Ethernet 

forwarding capability 

 4) WLAN Access Points 

 5) MEC servers 

FiWi 

  



29 

 

Title Objective Testbed details Medium 

An 

Experimental 

Measurement 

Analysis of 

Congestion Over 

Converged 

Fixed and 

Mobile 

Networks, 2018 

[66] 

- To introduce a guidance 

framework to MNOs so 

that they can enable 

converged fixed and 

mobile services with 

customized QoS support. 

- The testbed comprises of: 

1) Nokia 7360 ISAM FX as 

the OLT 

2) three Nokia 7750 SR-7 

routers and security 

gateway 

3) radio access network to 

provide cellular services 

4) Nokia 7705 SAR-A cell 

router 

FiWi 

Latency 

Performance 

Analysis of Low 

Layers Function 

Split for URLLC 

Applications in 

5G Networks, 

2019 [67] 

- To provide an 

experimental quantitative 

latency analysis of 

different low function 

split options at the 

fronthaul for ultra-reliable 

low latency 

communications URLLC 

- The testbed comprises of: 

 1) two computers to serve 

as client and server 

 2) E/O and O/E converters 

 3) USRP-b210 to generate 

RF interference 

 4) AWG is used to 

produce 1 GHz bandwidth 

OFDM signal at a carrier 

frequency of 1 GHz. 

 5) photodiode and laser 

diode 

FiWi 
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2.4 Router Testbed 

This section explains router testbed in three different approaches; software-based, 

commercial-based, and embedded system-based. Software-based router is a router that 

developed by using softwares and the produced results are purely from simulations. 

Commercial-based routers are routers that are available in the market either off-the-

shelf or industrial grade routers because they are widely used in various industrial 

fields. Whereas, embedded system-based routers are routers that are built by using 

embedded system hardware such as FPGA and Raspberry Pi, which are mostly used 

in lab-scale experiments. The summary of these approaches are tabulated at the end of 

this section. 

2.4.1 Software-based Router 

In 2015, Bahnasy et al. [68] proposed a simulation evaluations by using OpenFlow to 

control both packet which is called as OpenFlow Messages Mapping and optical 

network called as OpenFlow Extension. The simulation results are then compared with 

Generalized Multiprotocol Label Switching (GMPLS) approach by using Dynamic 

Resource Allocation via GMPLS Optical Networks (DRAGON). DRAGON 

comprises of two major components that are used as the control plane for GMPLS 

which are, client system agent (CSA) and virtual label switch router (VLSR). The 

comparison results show that the OpenFlow Extension solution outperforms 

OpenFlow Messages Mapping and GMPLS solutions because it has lower end-to-end 

light path setup time and lower blocking ratio and control traffic compared to GMPLS. 

One of the advantages of this work is VLSR and OpenFlow uses shortest path routing 

causing the delay for the packet is low.  Secondly, VLSR is flexible because it can 

control different types of switches such as Ethernet, TDM or optical.  Furthermore, 

VLSR is reliable because it uses TCP/IP protocol to transmit the packets. On the other 

hand, OpenFlow controller can recalculate alternative light path in case of light path 

failures. OpenFlow also has maximum flexibility and manageability because all the 

functionalities are controlled by a single OpenFlow controller. However, these 

approaches have disadvantages, such as, VLSR can cause high delay for the packet 

because the algorithm is complicated. Its flexibility and manageability are also low 
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because the signalization and reservation messages must be updated and exchanged 

among all intermediate VLSRs. 

Runge et al. [69] proposed a QoS aware software router model by using Network 

Simulator 3 (NS3) and evaluate the performance optimizations. The results show that 

the different scheduling strategies of a software router have significant influence on 

the performance of handling real time traffic. The advantage of this QoS aware 

software router is it has dedicated receiver ring for prioritized packet processing which 

will be served according to a specific scheduling strategy. Hence, the packet will be 

process faster for low latency constraints real-time traffics such as Voice over IP 

(VoIP), video conferencing and online gaming. However, the disadvantages are 

explained in [70]. The first disadvantage is that the user does not build up all the 

functionalities from scratch, instead, they are utilizing the existing models. The users 

must always have to consider which models that are suitable to be used in a certain 

context because if it is used in a different context, it malfunctions completely. The 

second disadvantage is that it has scalability limits. Which means, there are limited 

memory and it requires certain amount of computation time. Every nodes, channels 

and other components require memory space, therefore, their numbers are limited by 

available memory. 

Addie and Natarajan [71] proposed an analysis for Netml systems by using the 

simulations of NS3 and Click routers. The Netml system enables an XML description 

of a network to be converted into an NS3 program, then, run the simulation to collect 

and plot the results on Netml public server. A basic implementation of IPtables is also 

implemented. Users are able to specify any number of filtering rules within the 

forwarding chain of the filter table. The advantage of using Click router in this work 

is that it can build its own firewall. It is completely flexible, configurable and 

customizable according to user’s needs. According to Suresh and Merz [72], the main 

disadvantage of using NS3 and Click is that some of Click’s MAC elements are not 

supported by NS3 yet. Therefore, it will be a tedious work to find a compatible MAC 

elements making the work more complicated. 
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The software router by Goswami et al. [73] studied on how to achieve the estimation 

of optical-layer power consumption and cost for a long distance optical networks using 

Wavelength Division Multiplexing (WDM). The simulation was conducted by using 

C++ programming language. The test is implemented on two different networks which 

are IP-over-WDM and IP-over-MPLS-over-WDM networks. In the former network 

test, which is IP-over-WDM network, IP routers communicate directly with 

Wavelength-Routed Optical Network (WRON) and bandwidth requests are equal to 

light-path capacity. On the other hand, in IP-over-MPLS-over-WDM network, the IP 

routers communicate with WRON through MPLS routers, hence the bandwidth 

requests arrived as Label Switch Path (LSP). Therefore, it is lower than light-path 

capacity. The advantage of this work is that it is cost efficient and reconfigurable. 

However, the disadvantage of C++ in this work is that it is not a specific network 

simulation tool. Hence, a lot of assumptions must be made in order to simulate as close 

to real network as possible. This will make the produced results to be inaccurate and 

cannot be implemented in real network.  

In 2016, Ohsugi et al. [74] developed a power consumption model of multicore 

software Named Data Network (NDN) router. By applying this model, it is reported 

that caching can reduce power consumption when the computation of caching is as 

low as during data forwarding. The advantage of using NDN software router is that it 

reduces the amount of traffic forwarded towards upstream routers and thus, reduces 

the power consumed by their forwarding devices. However, the disadvantage of NDN 

is that it has limited scalability, which means, it cannot manage when the network 

becomes too complex.  

In 2017, In a different work by Xu et al. [75], a framework called Minos has been 

proposed to regulate router actions on data planes. Action Identifier (AID) is the input 

for Minos to perform lookups in Regulated Action Table (RAT). Minos is expected to 

get a couple of distinct factors that will affect the security of a programmable router 

such as cost and effectiveness. This is because the reprogrammability of a router makes 

it vulnerable and exposed to the risk of being hacked. Minos is implemented and 

evaluated separately on Click and Data Plane Development Kit (DPDK). DPDK 

comprises of a set of libraries that support efficient implementations of network 
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functions [76]. According to Rajesh et al. [77], Intel DPDK is able to boost packet 

processing performance and throughput, hence, allowing more time for data plane 

applications. However, DPDK does not have cache coherence and locality making its 

access time to be slow.  

In 2018, the work by Tajiki et al. [78], focuses on a new traffic engineering architecture 

for SDN-MPLS network, where they proposed improving flow-level management 

flexibility. It is done by applying OpenFlow-enabled switches at the edge of the 

network while the MPLS routers are the core router of the network. The simulation 

was done by using MATLAB2016b. The proposed scheme also re-assigns flows in the 

LSP to highly utilize the network resource. MATLAB2016b has improved 

functionalities in the toolbox that enable users to produce better equations and 

algorithms. Hence, more accurate results can be produced. The main disadvantage of 

using MATLAB in this work is that it can be slow to process and compute for a such 

complex hybrid network like in proposed work. 

Lastly, in 2019, Kim et al. [79] proposed a new Internet architecture for the future 

mobile network called Mobile-Oriented Future Internet (MOFI). The architecture of 

MOFI comprises of two main components; the separation of control and data plane for 

getting an optimal data path and distributed identifier as the locator mapping control 

for alleviating traffic overhead at the central agent. The architecture of MOFI is built 

by using OpenFlow and Click modular router on a Linux platform.  The results show 

that proposed MOFI able to provide mobility management efficiently and support the 

backward compatibility for the current IP network and IP version 6 (IPv6) 

applications. The advantage of Click modular router in this work is it is a flexible 

software router that enables the user to configure and customize freely according to 

the user’s needs. According to Kohler et al. [80], Click can achieve a maximum loss-

free forwarding rate of 333,000 of 64 bytes packets per second when run on Linux 

computers, proving that Click’s modular and flexibility architecture is compatible with 

good performance. On the other hand, OpenFlow supports IPv6, hence, it can support 

more users compared to IPv4. However, user usually uses small elements to create 

configurations to develop Click routers. These elements cannot solve problems such 

as when control flow and data flow do not match the flow of packets. Therefore, large 
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elements are required to overcome these problems. Hence, this makes the development 

of a router complicated since the big elements run a complex process for a protocol 

like 802.1d [81]. 

As conclusion, various of software are used for the software router simulation such as 

VLSR, Click, NS3, DPDK, MATLAB2016b, C++ and NDN. Most of the authors were 

using Click modular router due to its flexibility, configurability and customizability. 

However, the result produced by the software routers do not consider the non-linear 

effects because there are no hardware involved. 

2.4.2 Commercial-based Router 

In 2014, Blair et al. [82] used four MPLS routers in their experiment, with multiple 

protocols such as IEEE C37.94, IEC 61850-9-2 Sampled Values, and IEC 61850-8-1 

Generic Object-Oriented Substation Event (GOOSE). The study is to demonstrate and 

analyse the use of commercial IP/MPLS protocol to carry protection relay hardware to 

support power system protection functions. They also used Real-time Digital 

Simulator (RTDS) to simulate the power system and interfaced with the hardware 

protection relays. RTDS allows power system faults and other events to be simulated 

in real-time. The authors run two different experiments. For the first experiment, the 

author runs the experiment for nine times. The first five tests are to get the propagation 

delay results for a chain of IP/MPLS routers. According to the results, the jitter buffer 

size increases as the payload size increases. Thus, the propagation delay increases. For 

sixth test onwards are to get the results of propagation delay for ring topology of 

IP/MPLS routers. The advantage for the ring setup in sixth test compared to fifth test 

is that it has rerouting capability because the setup has an alternate path for the packets 

in case of broken link. There is small difference in terms of propagation delay for the 

sixth and seventh test due to the variation of delay in the hardware. At the eighth and 

ninth test, the propagation delay increases when number of C37.94 slots decreases 

even when the payload size is very small. This is because the main purpose of the slots 

is to define the end-to-end usable bandwidth for the packets. Hence, if the number of 

slots is small, the usable bandwidth will also be small causing the delay to be high. For 

the second experiment, the results show that IEC 61850 SV and GOOSE are better 
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than IEEE C37.94 in terms of circuit breaker tripped time, and backup intertrip time. 

Even the bandwidth used by these two protocols is greater, they are able to transfer 

much more information for three-phase voltage and current waveforms. The advantage 

of IP/MPLS routers in this work is that the routers has the capability to support ring 

topology. Hence, the data has better protection because it can be rerouted to another 

path in case of broken links. This feature is crucial especially in power system since 

the data must flow continuously all the time to detect faults in the system. However, 

as mentioned in earlier, the traffic flows in this router are still prone to congestions 

because the data for all the services are transmitted in one LSP. 

In 2015, Feng et al. [83] proposed a testbed using an OpenFlow module that is 

embedded in the control plane of a commercial router. It is used to set up a datapath 

with an external OpenFlow controller using OpenFlow protocol. The commercial 

router used is DCRM 5980. The testbed proves that it could not only implement the 

software-defined networking functionalities for network control flexibility, but also it 

is easy for rapid deployment with updating the software image instead of adding or 

changing any hardware. The advantage of using DCRM 5980 router in this testbed is 

that it can be implemented with other firmware such as OpenFlow. The router also 

supports IPv6, hence it can support more users connected to it. It is also flexible and 

scalable. Furthermore, it supports VLAN and MPLS. However, after installing 

OpenFlow, the routing is based on the shortest path. Hence, the data will use the 

shortest path even the path is congested which can cause high delay in data 

transmissions and increase the number of packet loss. 

In 2016, Sgambelluri et al. [84], implemented Segment Routing (SR) in two different 

networks, which are SDN-based and Path Computation Element (PCE)-based. SR 

technology is proposed to provide minimum depth segment list encoding for the data 

path, hence, less computation delay for both networks. In SDN-based network, SR 

controller is implemented in an OpenFlow controller. While in PCE-based network, 

SR is implemented where the nodes consist of commercial IP/MPLS routers. The 

results for both implementations are similar because the same path and segment list 

computation were implemented in both controllers. The routing mechanism of a 

commercial IP/MPLS routers is based on the short label header on the data rather than 
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long network addresses. Hence, this router avoids complex lookups in a routing table 

to speed up the traffic flows. However, the traffic flows in this router are still prone to 

congestions because the data for all the services are transmitted in one LSP. 

In 2017, Tantayakul et al. [85] used two commercial routers to evaluate the 

performance of open source OpenFlow switches, which are OpenvSwitch (OVS) and 

ofsoftswitch13 (CPqD) in terms of UDP throughput, TCP throughput and percentage 

of packet loss. The two commercial routers are TP-LINK WR1043ND routers. One of 

the routers sets as an OpenFlow switch. Ryu controller is used to manage the routing 

path of OpenFlow switches while iperf tool is used to generate UDP and TCP traffics 

in order to measure and evaluate the performance. The results show that the maximum 

bandwidth of OVS is higher than CPqD for both UDP and TCP traffics. However, 

although CPqD has limited bandwidth of 50 Mbps, it provides faster OpenFlow 

handshake and uses less memory space compared to OVS. In this work, the advantage 

of using TP-LINK WR1043ND routers is that the firmware of the routers can be 

reinstall or upgraded to another firmware such as OpenFlow by using OpenWRT. 

These routers also provide accurate results in real-time because it has gigabit 

bandwidth by default, hence, more data can be transmitted at once. However, these 

routers have high packet loss which is around 57% to 58%. This is because the router 

was running on CPqD which only has 50 Mbps of bandwidth but the data rate 

generated by Iperf is 100 Mbps. 

Lastly, in 2019, Chen et al. [86] proposed a local feature-based deep long short-term 

memory (LF-DLSTM) approach for WiFi fingerprinting indoor localization by using 

TP-LINK WDR4300 router. The experiments were done in two different 

environments, which are in a research lab and in an office. The proposed approach is 

compared with state-of-the-art methods for indoor localization. The results show that 

the proposed approach achieved the best localization performance in these two 

environments. When compared with state-of-the-art methods, it achieved 

improvements from 18.9% to 53.46% indicating the effectiveness of LF-DLSTM. The 

advantage of using TP-LINK WDR4300 router is that it has big coverage because it 

has three dual band external antennas. It also has high bandwidth that supports 
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simultaneous data transmission. Hence, more data can be transmitted at once to obtain 

accurate results. However, this router is not configurable. 

As conclusion, commercial routers are able to produce accurate and high performance 

results. However, most of the commercial routers are not reconfigurable in terms of 

tweaking its existing program. Even though there are routers in the literature that 

embedded with OpenFlow by the authors, its current program is still cannot be 

reconfigured. From the literature, we can identify that commercial routers are prone to 

frequent congestions, high packet loss and not reconfigurable. 

2.4.3 Embedded system-based Router 

In 2016, Sivarman et al. [87] used netFPGA as the router to study the role of packet 

buffer memory on the power consumption of backbone routers. They have developed 

an algorithm for the memory components to sleep and awake when needed, while 

being able to control the resulting traffic performance degradation in the form of packet 

loss during congestion. They conducted a comprehensive evaluation of their algorithm 

by using the simulation of offline traffic traces taken from carrier/enterprise networks 

as well as online TCP flow in Network Simulator 2 (NS2). The evaluation also being 

implemented on a programmable router testbed which is the netFPGA. NetFPGA is 

connected to traffic generators and delay emulators to demonstrate the feasibility of 

implementing the algorithm in the hardware. After implemented on netFPGA, the 

algorithm has saved 40% of the energy when it is under very heavy load. The 

advantage of using netFPGA is it can be reprogrammable by using VHDL 

programming language.  

Hoo and Kumar [88] proposed a distributed memory parallel FPGA router called 

Parallel Router Distributed Memory (ParaDiMe) to speculatively routes in parallel and 

dynamically detects the need of reducing the number of active processes in order to 

speed up the routing process in the network. The results were compared with other 

type of FPGA routing which is called Verilog-to-routing (VTR). Compared to VTR, 

ParaDiMe achieved an average speed up of 19.8 times with 32 processes while 

producing similar quality of results. The advantages of using FPGA is that it is 
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reconfigurable and reprogrammable. It also has high performance to produce accurate 

results. 

In 2018, Concatto et al. [89] proposed a custom-made, FPGA-based router with a 

simple arithmetic routing engine which is expected to be much more efficient in terms 

of power and area utilization. The results of the experiment show that the power 

consumption when using arithmetic routing is less than 5 W which is only 12.5% of 

the power delivered by FPGA. The throughput and latency of the proposed work show 

a promising figure of 8 Gbps and 500 ns per hop respectively. The advantage of using 

FPGA in this testbed is that it is reconfigurable and reprogrammable. It also provides 

high bandwidth up to 40 Gbps. It has high performance of computation to obtain 

accurate results. However, the disadvantages of [87-89] are that they are FPGA-based. 

FPGA contains a lot of configurable logic blocks and complicated programming, 

making the computation time contributes to overall network latency. This complexity 

can degrade the network performance. 

Posch et al. [90] proposed a testbed using Banana Pi R1 as a router. This work 

demonstrates NDN-based multimedia delivery using adaptive bit-rate streaming. 

Additionally, a graphical user interface is provided to create their own network 

topology, configure a streaming scenario and observe in near-real time. Two dedicated 

networks which are Management Network (MN) and Emulation Network (EN) are 

connected with Banana Pi in a star topology.  The role of Management Network (MN) 

is for configuration and monitoring. While EN is a virtual network overlay that is 

created using networking tools such as iptables and traffic control. The purpose of 

having the separation between MN and EN is to prevent management and control 

interference with running network emulation. Their results presented in [91] show that 

the delay is big despite the packets are sent from one node to its adjacent node via 

CAT6 Ethernet cable. This is because the Banana Pi is connected with two networks, 

hence the processor cannot keep up with the networks, operating systems, and data 

transmission at the same time. Supported by the results obtained in [92], it shows that 

Banana Pi gives low throughput and high delay for point-to-multipoint connection in 

LAN and WAN network despite it has Gigabit Ethernet ports.  The advantage of using 

Banana Pi is that it has more than one Ethernet port making it space friendly to be a 
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testbed. Furthermore, it already has built-in routing algorithm. However, according to 

Lech and Włodarski [92], Banana Pi has its own weakness. It produces a huge delay 

which is up to 43 ms for such a simple point-to-multipoint LAN and Wide Area 

Network (WAN) topology. Furthermore, according to the author, Banana Pi can cause 

a serious problem to the network when it receives a large amount of traffic. These 

problems can be overcome by using Raspberry Pi because the user can set an 

individual route for each traffic by using socket module in Python. Furthermore, built-

in routing algorithm of Banana Pi is not reconfigurable.  

In 2016, Jang et al. [93] proposed a testbed architecture using Raspberry Pi which 

allows dynamic configuration of mesh networks and coordination of each flow of 

traffic to support application-aware QoS. The router testbed is compatible with legacy 

network architecture in IEEE 802.11 ad-hoc network. The proposed testbed prioritizes 

the video streaming application instead of file transfer. This limits the file transfer 

traffic so that it does not harm the video streaming throughput. Hence, the video stream 

has less delay because intermediate router prioritizes the traffic in order to comply with 

QoS requirement predefined by the router testbed algorithm. The advantage of using 

Raspberry Pi as router testbed is that it is reconfigurable and scalable. It is also cost-

efficient to be the testbed. However, Raspberry Pi has low performance due to its 

hardware limitations that might cause high delay during data transmission. In this 

work, the Raspberry Pi router testbed has no rerouting mechanism in case of 

congestion. 

Piao et al. [94] proposed a wireless communication prototype by using Raspberry Pi 

to communicate with Android smartphones. The Raspberry Pi is installed with NDN 

routing mechanism called NDN Forwarding Daemon (NFD). The routing mechanism 

is based on shortest path. The results show the relationship between communication 

delay and number of pings. Based on the results, the communication delay reached its 

peak when the number of ping is 45. The advantage of using Raspberry Pi in this work 

is that it is reconfigurable and scalable. The kernel of Raspberry Pi is an open source 

kernel which can be used to write and execute custom algorithm. However, the routing 

mechanism in this work is based on shortest path. Hence, it does not reroute in case of 

congested path. As mentioned earlier, Raspberry Pi has low performance due to its 
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hardware limitations. But it is acceptable because the results produced are very close 

to the results produced by commercial routers and they are still within an acceptable 

range of communication standards. 

Lastly, Gupta et al. [95] has proposed a small size, low cost and portable SDN switch 

testbed using Raspberry Pi.  The Raspberry Pi only has 1 Ethernet port, but the authors 

extended it by using three low-cost USB-based LAN cards. In order to make the 

Raspberry Pi as SDN switch, it is installed with Ubuntu MATE 15.04 instead of 

Raspbian to support the latest version of OpenFlow switch. Four laptops are connected 

to the SDN switch as client, POX/RYU controller, and the other two laptops act as the 

servers. The testbed has no numerical results yet but it is claimed to support OpenFlow 

Specification 1.0 to 1.4. The main advantage of using Raspberry Pi in this work is that 

it is space-friendly for a lab-scale testbed.  

As conclusion, embedded system-based routers are reconfigurable, reprogrammable, 

scalable, space friendly and cost-efficient. These advantages of embedded system-

based routers make them an ideal choice as the lab-scale router testbed for research 

and academic purposes. In this section, the main embedded system hardware used in 

the literature are FPGA, Banana Pi and Raspberry Pi. However, embedded system like 

FPGA is complex to be reconfigured. It is also sensitive to electrostatic charges on 

human body and not cost efficient. Whereas, built-in routing of Banana Pi is not 

reconfigurable. These problems are solved by using Raspberry Pi since both the kernel 

and algorithms are completely configurable. 

In [93], the proposed wireless Raspberry Pi routers are connected in mesh setup. 

Therefore, each router needs extra computational time to decide which route to use 

just for point-to-point communications. Hence, the redundant computational time 

contributes to overall degradation of network performance. Furthermore, proposed 

FiWi router testbed has better scalability since the testbed covers both fiber and 

wireless transmissions. In [94], the proposed router uses Raspberry Pi 2 which has 

lower hardware specifications than proposed FiWi router in this thesis. Furthermore, 

built-in routing mechanism in NDN that is implemented in Raspberry Pi 2 is not 

reconfigurable. Compared to proposed FiWi router in this thesis, the Raspberry Pi 3B+ 
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used has better hardware specifications, hence, it is able to produce better performance. 

Furthermore, its routing mechanism can be reconfigured freely according to the user’s 

needs. Lastly in [95], Raspberry Pi is used to run OpenFlow to become a router. 

However, the built-in routing program cannot be reconfigured freely by the user unlike 

proposed FiWi router in this thesis 

Table 2.2 Router testbed summary 

Title Description Advantages Disadvantages 

Software-based 

OpenFlo

w and 

GMPLS 

Unified 

Control 

Planes: 

Testbed 

Implemen

tation 

And 

Comparat

ive Study, 

2015 [68] 

- This paper proposed 

and experimentally 

evaluates two 

solutions using 

Open Flow (OF) 

and OpenFlow 

Extension. The 

results are evaluated 

and compared with 

Dynamic Resource 

Allocation via 

GMPLS Optical 

Networks 

(DRAGON)  

- DRAGON 

comprises of two 

major components; 

client system agent 

(CSA) and virtual 

label switch router 

(VLSR). 

- VLSR and CSA are 

used as the control 

plane for GMPLS. 

- VLSR and OF uses 

shortest path routing 

causing the low delay 

for the packets. 

- VLSR can control 

different types of 

switches. 

- VLSR is reliable  

- OF controller can 

recalculate alternative 

light path in case of 

light path failures. 

- OF has maximum 

flexibility and 

manageability  

- VLSR causes high 

delay for the packet 

because the algorithm is 

complicated. The 

flexibility and 

manageability are low 

because the 

signalization and 

reservation messages 

must be updated and 

exchanged among all 

intermediate VLSRs. 

- OF and VLSR are not 

intelligent since it will 

choose the shortest path 

even though the path is 

congested.  

- No hardware involved. 
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Title Description Advantages Disadvantages 

Software-based 

Towards 

Low 

Latency 

Software 

Routers, 

2015 [69] 

- Proposed a QoS 

aware software 

router model by 

using NS3 and 

evaluate the 

performance 

optimizations. 

- The QoS aware 

software router model 

has dedicated receiver 

ring for prioritized 

packet processing 

which will be served 

according to a specific 

scheduling strategy. 

Hence, the packet will 

be process faster for 

low latency 

constraints real-time 

traffics such as VoIP, 

video conferencing, 

and online gaming. 

- There is no hardware 

involved, hence, no 

non-linear effects are 

considered in the 

simulations. 

- Disadvantages: 

1) user does not build 

up all the functionalities 

from scratch, instead, 

they are utilizing the 

existing models. 

2) scalability limits 

Netml-

ns3-click: 

modeling 

of routers 

in 

Netml/ns

3 by 

means of 

the click 

modular 

router, 

2015 [71] 

- Proposed an 

analysis for Netml 

systems by using 

the simulations of 

NS3 and Click 

routers. The Netml 

system enables an 

XML description of 

a network to be 

converted into an 

NS3 program, then, 

run the simulation 

to collect and plot 

the results on Netml 

public server. A 

basic 

implementation of 

IPtables is also 

implemented. 

- The advantage of 

using Click router in 

this work is that it can 

build its own firewall. 

- Click router is 

completely flexible, 

configurable and 

customizable 

according to user’s 

needs. 

- No hardware involved 

- Some of Click’s MAC 

elements is not 

supported by NS3 yet. 
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Title Description Advantages Disadvantages 

Software-based 

On 

methodol

ogies to 

estimate 

optical-

layer 

power 

consumpt

ion and 

cost for 

long-haul 

WDM 

networks 

with 

optical 

reach 

constrain, 

2015 [73] 

- Studied how to 

achieve the 

estimation of 

optical-layer power 

consumption and 

cost for a long 

distance optical 

networks using 

Wavelength 

Division 

Multiplexing 

(WDM). The test is 

implemented on two 

different networks 

which are IP-over-

WDM and IP-over-

MPLS-over-WDM 

networks. 

- The simulation was 

conducted by using 

C++ programming 

language. 

- Cost efficient 

- reconfigurable 

- No hardware involved 

- A lot of assumptions 

must be made in order 

to simulate as close to 

real network as 

possible. This will make 

the produced results to 

be inaccurate and 

cannot be implemented 

in real network. 
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Title Description Advantages Disadvantages 

Software-based 

Power 

consumpt

ion model 

of NDN-

based 

multicore 

software 

router 

based on 

detailed 

protocol 

analysis, 

2016 [74] 

- Developed a power 

consumption model 

of multicore 

software Named 

Data Network 

(NDN) router. 

- It reduces the amount 

of traffic forwarded 

towards upstream 

routers and thus, 

reduces the power 

consumed by their 

forwarding devices. 

- Has limited scalability 

- No hardware involved 

MINOS: 

regulating 

router 

dataplane 

actions in 

dynamic 

runtime 

environm

ents, 2017 

[75] 

- A framework 

called Minos has 

been proposed to 

regulate router 

actions on data 

planes. 

- Minos is 

implemented and 

evaluated 

separately on Click 

and Data Plane 

Development Kit 

(DPDK). 

- DPDK comprises of a 

set of libraries that 

support efficient 

implementations of 

network functions 

[76]. 

- DPDK able to boost 

packet processing 

performance and 

throughput, hence, 

allowing more time 

for data plane 

applications [77]. 

- DPDK does not have 

cache coherence and 

locality making its 

access time to be slow. 

- No hardware involved 

in this work 
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Title Description Advantages Disadvantages 

Software-based 

SDN-

Based 

Resource 

Allocatio

n in 

MPLS 

Networks

: A 

Hybrid 

Approach

, 2018 

[78] 

- Proposed on a new 

traffic engineering 

architecture for 

SDN-MPLS 

network, where 

they improve flow-

level management 

flexibility. It is 

done by applying 

OpenFlow-enabled 

switches at the 

edge of the 

network while the 

MPLS routers are 

the core router of 

the network. 

- The simulation was 

done by using 

MATLAB2016b. 

- MATLAB2016b has 

improved 

functionalities in the 

toolbox that enable 

users to produce better 

equations and 

algorithms. Hence, 

more accurate results 

can be produced. 

- No hardware involved 

- It can be slow to 

process and compute for 

a such complex hybrid 

network like in 

proposed work. 
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Title Description Advantages Disadvantages 

Software-based 

Mobile-

oriented 

Future 

Internet: 

Implemen

tation 

And 

Experime

ntations 

Over EU–

Korea 

Testbed, 

2019 [79] 

- A new Internet 

architecture for the 

future mobile 

network was 

proposed, named 

Mobile-Oriented 

Future Internet 

(MOFI). The MOFI 

architecture 

comprises of two 

main components: 

(1) separation of 

data and control 

planes 

(2) distributed 

identifier–locator 

mapping control for 

alleviating traffic 

overhead at a 

central agent. MOFI 

architecture is 

implemented using 

OpenFlow and 

Click Modular 

Router over a Linux 

platform, operated.  

- Click modular router 

is a flexible software 

router that enables the 

user to configure and 

customize freely 

according to the user’s 

needs. 

- Click can achieve a 

maximum loss-free 

forwarding rate of 

333,000 of 64 bytes 

packets per second 

when run on Linux 

computers, proving 

that Click’s modular 

and flexible 

architecture is 

compatible with good 

performance [80]. 

- OF supports IPv6, 

hence, it supports 

more users than IPv4. 

- Click modular router is 

not considering non-

linear effects such as 

noises and fluctuations 

because there is no 

hardware involved.  

- Small elements cannot 

solve problems like 

when control and data 

flows do not match with 

the flow of packets 
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Title Description Advantages Disadvantages 

Commercial-based 

Demonstr

ation and 

analysis 

of 

IP/MPLS 

communi

cations 

for 

delivering 

power 

system 

protection 

solutions 

using 

IEEE 

C37. 94, 

IEC 

61850 

Sampled 

Values, 

and IEC 

61850 

GOOSE 

protocols 

, 2014 

[82] 

- Used four MPLS 

routers in their 

experiment. The 

study is to 

demonstrate and 

analyse the use of 

commercial 

IP/MPLS protocol 

to carry protection 

relay hardware to 

support power 

system protection 

functions.  

- The advantage of 

IP/MPLS routers in 

this work is that the 

routers has the 

capability to support 

ring topology. Hence, 

the data has better 

protection because it 

can be rerouted to 

another path in case of 

broken links. 

- The traffic flows in 

IP/MPLS router are still 

prone to congestions 

because the data for all 

the services are 

transmitted in one LSP. 
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Title Description Advantages Disadvantages 

Commercial-based 

Hybrid 

SDN 

Architect

ure To 

Integrate 

With 

Legacy 

Control 

And 

Managem

ent Plane: 

An 

Experienc

es-based 

Study, 

2015 [83] 

- Proposed a testbed 

that an OpenFlow 

module is embedded 

in the control plane 

of a commercial 

router  

- The commercial 

router used is 

DCRM 5980. 

- The router can be 

implemented with 

other firmware such as 

OpenFlow 

- The router supports 

IPv6, hence supports 

more users connected 

to it. 

- Flexible and scalable 

- supports VLAN and 

MPLS 

- After installing 

OpenFlow, the routing 

is based on shortest 

path. Which means, the 

data will use the 

shortest path even the 

path is congested. 

Experime

ntal 

demonstr

ation of 

segment 

routing, 

2016 [84] 

- Implemented 

Segment Routing 

(SR) in two 

different networks, 

which are SDN-

based and Path 

Computation 

Element (PCE)-

based. In PCE-

based network, SR 

is implemented 

where the nodes 

consist of 

commercial 

IP/MPLS routers. 

- The routing 

mechanism of a 

commercial IP/MPLS 

routers is based on the 

short label header on 

the data rather than 

long network 

addresses. Hence, this 

router avoids complex 

lookups in a routing 

table to speed up the 

traffic flows. 

- The traffic flows in 

IP/MPLS router are still 

prone to congestions 

because the data for all 

the services are 

transmitted in one LSP. 
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Title Description Advantages Disadvantages 

Commercial-based 

Experime

ntal 

Analysis 

in SDN 

Open 

Source 

Environm

ent, 2017 

[85] 

- Used two 

commercial routers 

to evaluate the 

performance of 

open source 

OpenFlow switches, 

which are 

OpenvSwitch 

(OVS) and 

ofsoftswitch13 

(CPqD 

- The two commercial 

routers are TP-

LINK WR1043ND 

routers. One of the 

routers sets as an 

OpenFlow switch. 

- Ryu controller is 

used to manage the 

routing path of 

OpenFlow switches 

while iperf tool is 

used to generate 

UDP and TCP 

traffics. 

- The firmware of the 

router can be reinstall 

or upgraded to another 

firmware such as 

OpenFlow. 

- Provides accurate 

results in real-time. 

- This router has gigabit 

bandwidth; hence, 

more data can be 

transmitted at once. 

Thus, more accurate 

results can be 

obtained. 

- Has high packet loss 

which about 57% to 

58% 

- After reinstall to 

another firmware, the 

bandwidth of the router 

reduced significantly. 
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Title Description Advantages Disadvantages 

Commercial-based 

WiFi 

Fingerpri

nting 

Indoor 

Localizati

on Using 

Local 

Feature-

Based 

Deep 

LSTM, 

2019 [86] 

- Proposed a local 

feature-based deep 

long short-term 

memory (LF-

DLSTM) approach 

for WiFi 

fingerprinting 

indoor localization 

by using TP-LINK 

WDR4300 router. 

The experiments 

were done in two 

different 

environments, 

which are in a 

research lab and in 

an office. The 

proposed approach 

is compared with 

state-of-the-art 

methods for indoor 

localization. 

- The router has big 

coverage because it 

has three dual band 

external antennas. 

- Has high bandwidth 

which supports 

simultaneous data 

transmission. Hence, 

more data can be 

transmitted at once to 

obtain accurate 

results. 

- The router is not 

reconfigurable 
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Title Description Advantages Disadvantages 

Embedded system-based 

Greening 

Router 

Line-Cards 

via 

Dynamic 

Manageme

nt of Packet 

Memory, 

2016 [87] 

- Used netFPGA as 

the router to study 

the role of packet 

buffer memory on 

the power 

consumption of 

backbone routers.  

- The evaluation 

also being 

implemented on a 

programmable 

router testbed 

which is the 

netFPGA. 

NetFPGA is 

connected to 

traffic generators 

and delay 

emulators. 

- The advantage of 

using netFPGA is it 

can be 

reprogrammable by 

using VHDL 

programming 

language. 

- The netFPGA is not 

cost-efficient and 

sensitive to electrostatic 

on human body. 

- netFPGA is complex as 

FPGA 

ParaDiMe: 

A 

Distributed 

Memory 

FPGA 

Router 

Based On 

Speculative 

Parallelism 

and Path 

Encoding, 

2017 [88] 

- Proposed a 

distributed 

memory parallel 

FPGA router 

called Parallel 

Router 

Distributed 

Memory 

(ParaDiMe) to 

reduce the 

number of active 

processes. 

- FPGA is 

reconfigurable and 

reprogrammable 

- High performance to 

provide accurate 

results 

- Sensitive to electrostatic 

charges on human body 

- FPGA is very complex 

- Not cost-efficient 
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Title Description Advantages Disadvantages 

Embedded system-based 

A CAM-

free 

Exascalable 

HPC 

Router For 

Low-

Energy 

Communic

ations, 

2018 [89] 

- Proposed a 

custom-made, 

FPGA-based router 

with a simple 

arithmetic routing 

engine which is 

expected to be 

much more 

efficient in terms 

of power and area 

utilization. 

- FPGA is 

reconfigurable and 

reprogrammable 

- Provide high 

bandwidth up to 40 

Gbps 

- High performance of 

computation to obtain 

accurate results 

- Sensitive to 

electrostatic charges 

on human body. 

- FPGA is very 

complex 

- Not cost-efficient 

Emulating 

NDN-based 

multimedia 

delivery, 

2016 [90] 

- Proposed a testbed 

using Banana Pi R1 

as a router. This 

work demonstrates 

NDN-based 

multimedia delivery 

using adaptive bit-

rate streaming. Two 

dedicated networks 

which are 

Management 

Network (MN) and 

Emulation Network 

(EN) are connected 

with Banana Pi R1 

in a star topology.   

- It has more than one 

ethernet port making it 

space friendly to be a 

testbed 

- Built-in routing 

algorithm 

- It produces a huge 

delay which is up to 

43 ms for such a 

simple point-to-

multipoint LAN and 

Wide Area Network 

(WAN) topology [92] 

- Banana Pi can cause a 

serious problem to the 

network when it 

receives a large 

amount of traffic [92] 

- Built-in algorithm not 

reconfigurable 
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Title Description Advantages Disadvantages Differences 

Embedded system-based 

Implemen

ting a 

Dynamica

lly 

Reconfig

urable 

Wireless 

Mesh 

Network 

Testbed 

for Multi-

Faceted 

QoS 

Support, 

2016 [93] 

- Proposed a 

testbed 

architecture by 

using 

Raspberry Pi 

which allow 

dynamic 

configuration 

of mesh 

networks and 

coordination of 

each flow of 

traffic to 

support 

application-

aware QoS. 

- Raspberry Pi 

is 

reconfigurable 

and scalable 

- Cost-efficient 

- Low 

performance 

due to hardware 

limitations 

causing high 

delay when data 

is transmitted. 

- Has no 

rerouting 

mechanism in 

case of 

congestion 

- Proposed 

wireless router 

has extra 

computational 

time to decide 

which route to 

use in mesh 

network. 

- Only use 

wireless 

transmission. 

- Covers fiber 

and wireless 

transmissions. 

The Real 

Implemen

tation of 

NDN 

Forwardi

ng 

Strategy 

On 

Android 

Smartpho

ne, 2016 

[94] 

- Proposed a 

wireless 

communication 

prototype by 

using 

Raspberry Pi to 

communicate 

with Android 

smartphones. 

The Raspberry 

Pi is installed 

with NDN 

routing 

mechanism 

called NFD. 

- Raspberry Pi 

is 

reconfigurable 

and scalable 

- The kernel is 

open source 

which can be 

used to write 

and execute 

custom 

algorithms. 

- Raspberry Pi 

has low 

performance 

due to its 

hardware 

limitations 

- The routing 

algorithm is 

based on 

shortest path, 

hence, it does 

not reroute in 

case of 

congested path. 

- Raspberry Pi 2 

has lower 

specifications. 

- NDN is not 

reconfigurable. 

- Proposed FiWi 

router has 

higher 

specifications. 

- Proposed FiWi 

router is freely 

reconfigurable. 
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Title Description Advantages Disadvantages Differences 

Embedded system-based 

Developing 

Small Size 

Low-Cost 

Software-

Defined 

Networking 

Switch 

Using 

Raspberry 

Pi, 2018 

[95] 

- Has proposed 

a small size, 

low cost and 

portable SDN 

switch testbed 

using 

Raspberry Pi. 

Then, four 

laptops are 

connected to 

the SDN 

switch as 

client, 

POX/RYU 

controller, 

and the other 

two laptops 

act as the 

servers. 

- Space-friendly 

- Scalable  

- Limited 

hardware 

specifications 

- OpenFlow-

based 

Raspberry Pi 

router is not 

freely 

reconfigurable. 

- Proposed FiWi 

router is freely 

reconfigurable. 
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2.5 Summary  

In conclusion, FiWi is a technology that combines optical and wireless 

communication. It is widely used in current communication system due to its 

robustness and mobility. Despite it still has plenty rooms for improvements. Hence, 

many testbeds have been proposed by researchers to study numerous issues. Testbed 

is an ideal approach to test a setup of equipment in order to test or enhance current 

technology or as a proof-of-concept. There are also various architecture of testbeds 

which are fiber, wireless and FiWi. From the literature review, it can be concluded 

that FiWi testbeds can be implemented from a lab-scale testbed to an industrial-scale 

testbed which is summarized in Table 2.3.  

To the best of our knowledge, routers are installed at the backhaul of FiWi network. 

Hence, we further scope down our literature review on router testbeds which include 

software-based routers, commercial routers and embedded system-based routers 

which have been summarized in Figure 2.4. From the literature review, it can be 

concluded that most authors were using software-based routers as their testbeds 

because these routers are reconfigurable, customizable, flexible, cost-efficient and 

able to produce high performance results. However, there are no hardware involved in 

their work, hence, the results produced were not including non-linear affects such as 

noises and fluctuations. Meanwhile, commercial routers are able to produce accurate 

and high-performance results. However, most of these routers are not reconfigurable, 

not cost-efficient and not space friendly. Therefore, embedded-system-based routers 

were used as the testbed due to their open source kernel, reconfigurability, scalability, 

space-friendly and cost-efficient. Due to their limited hardware specifications, 

embedded system-based routers are not able to produce as high performance as 

software-based routers and commercial routers. To the best of our knowledge, 

embedded system-based routers are the best choice in order to build a testbed as the 

proof-of-concept of a fundamental of a technology or to enhance the current 

technology. Compared to other embedded system hardware, Raspberry Pi 3B+ used 

in this project has socket module that enables data communication between hardwares. 

It is simpler, more cost-efficient, space friendly and durable compared to others such 

as FPGA. Thus, development of reprogrammable and fast reconfigurable lab-scale 

FiWi testbed that supports the integration of fiber optic and wireless for research and 
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educational purposes is feasible. Furthermore, due to its simplicity, Raspberry Pi used 

in this project able to make the testbed scalable to more than one traffics and flexible 

to different topologies such as Fi-WiFi and Wi-FiWi. Therefore, we have come to our 

conclusion that Raspberry Pi as the main embedded system hardware is the best choice 

to be our testbed in FiWi network. 

Table 2.3 Overall summary of testbed architecture in FiWi 

Testbed Architecture in FiWi 

Hardware used Advantages Disadvantages 

Industrial grade 

hardware [2, 62-66] 

- High performance and 

accurate results 

- Support long distance 

transmission 

- Not reconfigurable and not 

fully reprogrammable 

- Not cost-efficient 

USRP [21, 67] - Reconfigurable and 

reprogrammable 

- Flexible and scalable 

- Space friendly 

- Not cost-efficient 
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Table 2.4 Overall summary of router testbed 

Router type Advantages Disadvantages 

Software-based [68, 

69, 71, 73-75, 78, 

79] 

- Freely reprogrammable 

- Flexible 

- Customizable 

- High performance 

- Cost-efficient 

- The parameters are based on 

assumptions 

- Not involved non-linear 

effects 

Commercial-based 

[82-86] 

- High performance and 

accurate results 

- Support many setups and 

topologies 

- Have better securities 

- Not reprogrammable and 

reconfigurable 

- Not cost-efficient 

Embedded system-

based 

1) FPGA/netFPGA [87-89]: 

- Reprogrammable and 

reconfigurable 

- High performance 

2) Banana Pi [90, 91]: 

- Has more than 1 Ethernet 

port 

- Has built-in algorithm 

3) Raspberry Pi [93-95]: 

- Reprogrammable and 

reconfigurable 

- Simple, scalable and flexible 

- Space-friendly and portable 

- Cost-efficient 

1) FPGA/netFPGA: 

- Complex and complicated in 

terms of programming and 

setup 

- Not fast integration 

- Not cost-efficient 

2) Banana Pi: 

- Can cause serious problem to 

the network [92] 

- Built-in algorithm not 

reconfigurable 

3) Raspberry Pi: 

- Limited performance (RAM, 

Ethernet performance) 
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CHAPTER 3  

 

METHODOLOGY 

3.1 Introduction 

This chapter proposes an embedded system-based FiWi testbed using Raspberry Pi 

3B+ that is able to perform various experiments and testings in point-to-point 

communication. The proposed FiWi testbed consists of four routers that are connected 

in tree topology. This topology is chosen because it is a typical topology for FiWi 

network [1, 7]. However, the topology of the testbed can be varied as desired. Each 

router consists integration of four Raspberry Pi 3B+ and switches. Raspberry Pi 3B+ 

is chosen because it is user friendly especially for beginners. It is also cost efficient 

making it more affordable. This makes it an ideal choice as an educational module 

with low power consumption and fast implementation.  

Overview of the FiWi testbed such as testbed topology, router architecture, network 

environment and default system parameters is explained in Section 3.2. The hardware 

used for this testbed are listed and discussed in Section 3.3. Section 3.4 explains on 

the testbed programming environment in terms of flowchart of the system, testbed 

scalability and fast integration. The design parameters and performance parameters 

are discussed in Section 3.5. Finally, Section 3.6 summarizes this chapter. 

In order to get better understanding on the flow of this chapter, the research flow in 

Figure 3.1 is referred. This chapter begins with a description of testbed topology and 

router architecture. Then, it continues with the description on the hardware used for 

the testbed such as Raspberry Pi 3B+, Ethernet switches, Fiber Media Converter 

(FMC) and optical fiber. Next, this chapter discusses about the network environment 

of the testbed, ie., the traffic of data in terms of data size. Finally, the parameters for 

the input and output of the testbed is deliberated. 
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1. Determine the design 

of the testbed and 

topology 

2. Study the on the 
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Figure 3.2 shows a flowchart that reflects the overview of technical development of 

the proposed testbed. Firstly, after the proposed routers are connected with one another 

in FiWi architecture, a packet is sent from one client to another client to observe its 

reliability. If the client does not receive the packet, then, an additional processing delay 

is increased in the proposed router. This process is repeated until the clients are able 

to receive the packet without fail. The value of additional processing delay is further 

discussed in Section 3.2.3. Afterwards, the performance of the proposed router testbed 

is tested in point-to-point wireless network, fiber network and FiWi network in terms 

of throughput, end-to-end delay and jitter in order to validate its correctness and 

comply with the current communication standards. After it is validated, a stress test is 

done by sending two traffics at a time to test the scalability of the proposed router 

testbed. Then, the topology is change to Fi-WiFi and Wi-FiWi in order to test its 

flexibility and stability. 
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Figure 3.2 Research flowchart 
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3.2 Proposed Fiber-Wireless Testbed 

3.2.1 Router Architecture 

This section explains on the proposed router architecture of the testbed. The proposed 

router architecture consists of four Raspberry Pi 3B+; one Header Pi and three 

Forwarding Pi which are then connected with two Ethernet switches as shown in 

Figure 3.3. The Header Pi is to identify the final destination of the data desired by the 

user. Whereas, the Forwarding Pis are to forward the data to desired destination. 

Ethernet Switch 1 is to represent the internal circuit of router, while Ethernet Switch 

2 is to represent the external connection between router and other routers. Each of the 

Raspberry Pi in the router has portable Liquid Crystal Display (LCD) screen to 

monitor the destination of data and to make sure that the routing mechanism is correct. 

These Raspberry Pis are connected to each other via CAT5e Ethernet cable through 

Ethernet switches. CAT5e Ethernet cable is used because it supports Gigabit Ethernet, 

therefore, it is compatible with Raspberry Pi 3B+ Ethernet port which also has Gigabit 

bandwidth.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Basic router architecture 
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In order to make the router supports wireless transmission, an extra component is 

added to the architecture which is the AP as shown in Figure 3.4. The AP acts as the 

wireless transmitter component and antennae for the router.  

3.2.2 Traffic Modelling 

This section discusses on the internal process of a router of this testbed. The flow of 

data represented by the dotted arrow in Figure 3.5. When a client sends a packet of 

data to the destination, a pre-label is added to the payload of the packet to indicate 

where the data should end. The client sends the data to Header Pi. Then, the Header 

Pi checks the label to know the beginning and end of data. After the Header Pi has 

identified the destination of the data, it replaces the old label with a new label onto the 

payload and then broadcast the data to each Forwarding Pis. Each of the Forwarding 

Pi has its own unique label because each identity label corresponds to one destination 

only. When the Forwarding Pi receives data from Header Pi, it will check the label on 

the payload of the packet with its own identity label. If both labels are the same, the 

Forwarding Pi will continue to forward the data to desired destination set by the client. 

Figure 3.4 Basic fiber-wireless router architecture 
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Otherwise, if both labels are not the same, the Forwarding Pi turns the data to zero and 

drops the packet. Figure 3.5 illustrates how the data is processed in the router. 

  

 

For analytics purposes, the maximum data size generated is 1448 bytes because it is 

the default maximum size of a packet set by Python in Raspberry Pi. The 1448 bytes 

of data includes 3 bytes reserved for the labels. The minimum data size transmitted is 

100 bytes because according to Brown [96], it is the most reliable data size to achieve 

0% packet loss in a transmission. Then, the data transmitted will be increased every 

100 bytes each time until it reaches 1445 bytes which is the maximum data size for a 

packet in socket module. Furthermore, the increment of 100 bytes will make the trend 

of the graph clearer.  

Figure 3.5 Data flow in a router 
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3.2.3 Default System Parameter 

In order to make sure that the data transmission is reliable with no packet loss, each of 

the Raspberry Pis in the router needs an extra processing time. This extra processing 

time can be added by importing another Python module called “time”. This module is 

already inside the Python programming folder. Therefore, function call is used to call 

for this module. By introducing extra processing time, the router has just enough time 

to process the packets including label injecting, label checking and packet forwarding. 

In this case, 80 ms is added to each Raspberry Pis of the router. This value is obtained 

by several iterations in an experiment. 1445 bytes of data is sent from one client to 

another client through their respective routers. An observation is done to check 

whether the client receives the data or not. Initially, there is no additional processing 

delay in the router. If the client does not receive the data, the delay of each Raspberry 

Pi in the router is increased by 10 ms until the client receives the data. 10 ms is chosen 

because through the experiment, it is the minimum amount of processing delay for 100 

bytes of data to arrive at the client. Lesser than 10 ms, none of the data arrived at the 

desired client. The default system parameter is summarized in Table 3.1. 

Table 3.1 Summary of default system parameter 

Default system parameter Value 

Extra processing delay 80 ms 

 

3.3 Raspberry Pi-based Fiber-Wireless Testbed 

3.3.1 Hardware Setup 

The testbed is setup in tree topology which consists of four routers as shown in Figure 

3.6 because other than limited amount of Raspberry Pis, it is the minimum number of 

routers to test the performance for all type of connections; fiber, wireless and Fi-Wi. 

The connection between routers is by using Single Core/Angled Physical Contact 

(SC/APC) fiber optic patch cord. Raspberry Pi only has one Ethernet port. Hence, a 

FMC is needed as an adapter between Raspberry Pi and fiber optic. Figure 3.7 shows 

the hardware setup for FiWi network environment that reflects block diagram in 

Figure 3.6.   
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Figure 3.6 FiWi testbed block diagram 
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Then, the topology is expanded to fiber-wireless-fiber (Fi-WiFi) and wireless-fiber-

wireless (Wi-FiWi) as shown in Figure 3.8 and Figure 3.9 respectively because 

compared to other topologies such as ring and mesh, we can test the performance and 

the reliability of the proposed router after gone through a number of medium changes 

from wireless to fiber and vice versa. Moreover, the purpose of these setups is to test 

to scalability of the testbed. 
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Figure 3.8 Fi-WiFi setup 
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3.3.2 Raspberry Pi Router Connections 

Figure 3.10 shows the connection between four Raspberry Pi 3B+ and two switches 

to form a router. As mentioned in Section 3.2.1, Header Pi is to check and identify the 

final destination based on the pre-label injected by the client. There are three 

Forwarding Pis in this router because, in a typical router, each of the port will have a 

unique IP address. Therefore, to emulate the real router, three Forwarding Pis are 

needed because each of them have a unique static IP address. Ethernet Switch 1 is to 

represent the internal connection of the routers, which means, the connection between 

Header Pi and Forwarding Pis. While Ethernet Switch 2 is to represent the external 

connection between router and other routers. Figure 3.11 shows the connection for 

fiber-wireless router.  

Figure 3.10 Raspberry Pi router connection 
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Figure 3.11 Raspberry Pi fiber-wireless router connection 

3.3.3 Optical Fiber 

Optical fiber used in this project is a single-mode fiber patch cord. The patch cord 

length is fixed at 1 m. The insertion loss for this fiber optic ranges from 0.11 dB to 

0.18 dB. The return loss ranges from 61.4 dB to 62.1 dB. 
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3.3.4 Fiber Media Converter (FMC) 

FMC is used as an adapter for Raspberry Pi to connect to the fiber optic. The supported 

data rate is up to 100 Mbps. The FMC also supports 20 km transmission while 

operating at 1310 nm wavelength for transmitting and receiving because it has 

individual port for transmit and receive as shown in Figure 3.14. 

3.3.5 Ethernet Switch 

Ethernet switch is used to provide more ports because Raspberry Pi has only one 

ethernet port. The ethernet switch has eight ports and it supports up to 100 Mbps  of 

bandwidth. 

 

Figure 3.14 Ethernet switch 

 

Figure 3.13 Fiber Media Converter 
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3.4 Raspberry Pi Fiber-Wireless Testbed Programming Environment 

3.4.1 Transmit and Receive Flowchart 

This section shows the flowchart of routing mechanism of this testbed for the client, 

Header Pi and Forwarding Pi that have been explained in Section 3.2.2. Figure 3.15, 

Figure 3.16 and Figure 3.17 show the flowchart for client, Header Pi and Forwarding 

Pi respectively. The red boxes in Figure 3.15 and Figure 3.16 are the examples of 

processes that take place in Figure 3.4. The flowchart shown in Figure 3.17 is only for 

Forwarding Pi A because all Forwarding Pis has the exact same process but with 

different labels. 

  

Figure 3.15 Client flowchart 
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Figure 3.16 Header Pi flowchart 

Figure 3.17 Forwarding Pi A flowchart 
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This testbed is connection-oriented communication which has three-way handshake 

by using socket module in Python. In order to declare the communication is 

connection-oriented, the program must include “s = socket.socket(socket.AF_INET, 

socket.SOCK_STREAM)”. The variable “s” is to simplify the whole line and will be 

easier to use later on in the program. Then, the first “socket” in “socket.socket” is the 

function call from socket module in Python module, while the second one is the 

function name. Next, “socket.AF_INET” means the communication is based on 

Internet Protocol version 4 (IPv4). Finally, “socket.SOCK_STREAM” means the 

protocol used is Transmission Control Protocol (TCP), which means it is connection-

oriented communication. 

After this declaration, the program checks whether or not the router receives the data 

or not by using “data = socket.recv(4096)”. In the program, “data” means the variable 

where the received data is stored. “socket.recv” is module used to receive the data. 

“4096” refers to 4096 bytes which is the buffer size for the incoming data. Once the 

data is received, the program checks the first 3 bytes of the data to check the label in 

“if-else” statements. In the “if-else” statement, if the label is the same with the label 

of Header Pi or Forwarding Pi, the data is forwarded by using “socket.send(data)”. 

Otherwise, the data turns to 0 by using “data = ‘0’”. The rest of the program is a 

repetitive of “if-else” statement but with different label values. 

3.4.2 Testbed scalability 

One of the objectives of this project is to develop a scalable FiWi testbed. Scalability 

means the ability for the testbed to adapt to a new architecture or arrangement easily 

and its ability to expand the number of new components. In order to add or remove a 

component in the FiWi testbed, minor changes need to be done to the testbed 

arrangement. In this case, the testbed setup is changed to Fi-WiFi and Wi-FiWi to test 

testbed’s scalability performance and to prove the router works in various setup. 

Fi-WiFi is an architecture where the data travels from fiber medium to another fiber 

medium via wireless medium as shown in Figure 3.10. When Client A sends a data to 

Client D, the data is processed by Router A. Then, it is sent to Router B via fiber and 
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Router C wirelessly. Router C processes the data again and sends it to router D via 

fiber optic. Finally, Router D processes the data and sends it to Client D. The process 

for each router is the same as in Figure 3.15, Figure 3.16 and Figure 3.17. However, 

simple changes to the program is needed in terms of label values so that the router can 

perform routing mechanism for Fi-WiFi architecture in a correct manner. Each label 

for Fi-WiFi must be unique from FiWi architecture and Wi-FiWi architecture to 

prevent the router from misinterpret the destination of the data. For example, if the 

Client A, Router A, Client B, Router B, Client C and Router C in FiWi setup as shown 

in Figure 3.7 have self-labels of 100, 111, 200, 222, 300, and 333 respectively, then, 

the self-label values for Client A, Router A, Client B, Router B, Client C, Router C, 

Client D, and Router D in Fi-WiFi setup in Figure 3.8 must be different, such as 500, 

501, 600, 601, 700, 701, 800, and 801 respectively. This is because the Fi-WiFi setup 

is different from FiWi setup since Client D and Router D in FiWi setup has fiber 

transmission only but not FiWi transmission. On the other hand, in Fi-WiFi includes 

all the clients and routers to transmit from one client to other client. This method 

applies to Wi-FiWi as well because it is also a different setup from FiWi and Fi-WiFi 

setups. The summary of the process is summarized in Table 3.2. 

Table 3.2 Summary of labels for FiWi, Fi-WiFi, Wi-FiWi 

Topology 

Labels 

Client 

A 

Router 

A 

Client 

B 

Router 

B 

Client 

C 

Router 

C 

Client 

D 

Router 

D 

FiWi 100 111 200 222 300 333 400 444 

Fi-WiFi 500 501 600 601 700 701 800 801 

Wi-FiWi 502 504 602 604 702 704 802 804 

 

3.4.3 Raspberry Pi Fiber-Wireless Testbed as an Educational Module 

Proposed Raspberry Pi router specifications are presented in Appendix D. However, 

this testbed is not only limited to research, but it is also a good platform for 

academicians to teach engineering students about how routing in data communication 

works. The teaching of communication often taught to the students using conventional 

methods such as notes, textbooks and slides which require more effort and time for 

the students to understand compared to hands-on experience on the testbed.  
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Using this testbed, students can learn data transmission in a typical FiWi architecture 

from a client to another client. When the user sends a data through Ethernet cable, the 

data needs to undergo medium conversions; electrical signals to optical signals and 

electrical signals to wireless signals. At the fiber side of FiWi architecture, the data 

undergo a conversion from electrical signals to optical signals because the travels from 

Ethernet cable to fiber optic via FMC. The FMC has a circuit board to process and 

translates the electrical signals to equivalent coded optical signals. A Light Emitting 

Diode (LED) or laser can be used to generate the optical pulses. These pulses are 

reflected to fiber optic medium by using lenses, hence, the data is travels through the 

fiber optic. Once the data arrived at the other FMC, the data is converted back from 

light signals to electrical signals by using photodiode.  

At the wireless side, when the router forwards the data wirelessly, the AP converts the 

data from electrical signals to electromagnetic signals. These data undergo a 

modulation called Frequency Modulation (FM) or Frequency Shift Keying (FSK) 

modulation. The digital data is translated based on the frequency of the waves. Then, 

at the other end, the AP receives the data wirelessly and demodulates it back to 

electrical signal. Thus, the client receives the data via Ethernet cable.  

 

3.5 Testbed Parameters 

The testbed’s design parameters and performance parameters are discussed in this 

section. 

3.5.1 Design Parameters 

Design parameters are defined as the input for the FiWi testbed. There are two types 

of design parameters that have been identified; data size and the end-to-end delay. 

The data size is the length of data in terms of bytes (B). The data size can be varied 

easily by the user at the client side. In this experiment, the increment of the transmitted 

data size is 100 bytes for each transmission. The data size affects the end-to-end delay 
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where greater data size may result in greater end-to-end delay. The end-to-end delay 

is used to study the throughput and jitter of the testbed. 

Table 3.3 Design parameters 

Description Units 

Data size B 

End-to-end delay s 

 

3.5.2 Performance Parameters 

Performance parameters are the output of the FiWi testbed. These outputs indicate the 

FiWi performance. There are three performance parameters for this testbed; end-to-

end delay, throughput and jitter. 

End-to-end delay is the time taken when the user sends the data from a client to a 

client. Throughput is the overall performance of the testbed in bit per second (bps) 

when the data size in bit (b) is divided by end-to-end delay in second (s). Finally, jitter 

is defined as the variation of end-to-end delay in second (s). The lower the jitter, the 

better the performance of the testbed. 

Table 3.4 Performance parameters 

Description Units 

Delay s 

Throughput bps 

Jitter s 
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3.6 Summary 

This chapter describes the proposed FiWi testbed by using Raspberry Pi 3B+ that 

supports data transmission for research and education purposes. The architecture of 

this testbed can be scaled easily to Fi-WiFi and Wi-FiWi without any tedious hardware 

rearrangement. The routing mechanism for FiWi, Fi-WiFi and Wi-FiWi can be 

achieved by changing the label for each client, Header Pi and Forwarding Pi in Python. 

The testbed is not only easy to input the parameters but also fast to obtain the result. 

This chapter also explains on the design parameters such as data size and end-to-end 

delay. The performance parameters such as delay, throughput and jitter are also 

discussed in this chapter. The next chapter will elaborate on the results and discussion 

for FiWi, Fi-WiFi, Wi-FiWi. 
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CHAPTER 4  

 

RESULTS AND PERFORMANCE EVALUATION 

4.1 Introduction 

This chapter discusses on the performance evaluation of proposed FiWi testbed. In 

Section 4.2, the testbed’s performance such as validation of the proposed testbed with 

off-the-shelf router is reviewed. The validation is done in terms of end-to-end delay 

of the data transmission of the testbed, as well as the throughput and the jitter. The 

performance of the testbed covers for wireless transmission, fiber transmission and 

FiWi transmission. This section also presents the outcome of performance evaluation 

for FiWi stress test in terms of end-to-end delay, throughput and jitter. Whereas for 

scalability performance test, this section presents the performance of Fi-WiFi and Wi-

FiWi. Finally, Section 4.7 presents the summary of this chapter 

4.2 Wireless Transmission Performance Test 

For this test, Raspberry Pi client is used to send a packet to another client via a pair of 

wireless routers. The initial data size transmitted is at 100 bytes. Then, the data size is 

increased by 100 bytes each time up to 1445 bytes. As mentioned in Chapter 3, 100 

bytes is chosen to achieve maximum reliability [96]. The point-to-point transmitting 

and receiving experiments are done for upstream and downstream transmissions. The 

performance of the experiment in terms of end-to-end delay, throughput and jitter are 

plotted on the graph. 

The proposed router is compared with off-the-shelf router to check its functionality 

and to observe its correctness. A pair of off-the-shelf routers used in this experiment 

are D-LINK DAP1360 because they can intercommunicate directly via MAC address 

by using Bridge configuration [97]. The setup for the off-the-shelves router is the same 

as the proposed testbed, which is point-to-point. The upstream and downstream 

transmissions are done by using two computers. One computer sends the data in the 

form of a file from one computer to another computer. The initial data size for the file 

is 10 kB. The data size is increased by 10 kB each time until 100 kB. It is increased 
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until 100 kB because the maximum bandwidth of the off-the-shelf router is not more 

than 1 Mbps [97]. The maximum bandwidth of the off-the-shelf router obtained 

through numerous experiments are consistent to 700 kbps. This is deemed acceptable 

as typical router has a max of 60% to 70% of its throughput in datasheet due to its 

header and congestion algorithm [98]. Then, the throughput of the experiment for 

upstream and downstream are captured using Wireshark. 

4.2.1 Throughput 

Figure 4.1 and Figure 4.2 show the downstream and upstream graphs of throughput 

for the proposed router and off-the-shelf router respectively. Based on Figure 4.1 the 

trend of the off-the-shelf router for upstream is increasing as the offered load increases 

from 0 bps at 0% offered load to 700 kbps at 100% offered load. Meanwhile, the 

throughput of the proposed router is also increasing as the offered load increases from 

0 bps at 0% offered load to 677 kbps offered load. Figure 4.2 shows that the throughput 

of the off-the shelf-router for downstream is increasing as the offered load increases 

from 0 bps at 0% offered load to 774 kbps at 100% offered load. Meanwhile, the 

throughput for the proposed router also increases from 0 bps at 0% offered load to 752 

kbps at 100% offered load. The throughput of the proposed router is scaled up to the 

throughput of the off-the-shelf router to observe the trend of the graph. The results 

show that the throughput of the proposed router has similar increasing trend with the 

throughput of off-the-shelf router, hence proving that proposed router performance is 

correct. For both Figure 4.1 and Figure 4.2, the off-the-shelf router has higher 

capability than the proposed router. This is expected because the proposed router has 

lower processing power than off-the-shelf router. Hence, it takes longer time to 

forward the data. The throughput for the proposed router is calculated by using 

Equation 4.1. 

                            𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝑏𝑝𝑠) =
𝐷𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 (𝑏𝑖𝑡)−𝐷𝑎𝑡𝑎 𝑙𝑜𝑠𝑠 (𝑏𝑖𝑡)

𝐸𝑛𝑑−𝑡𝑜−𝑒𝑛𝑑 𝑑𝑒𝑙𝑎𝑦 (𝑠)
                   (4.1) 

 

For both downstream and upstream transmissions, off-the-shelf router is able to 

transmit data up to 700 kbps and 774 kbps respectively at 100% offered with 1445 

bytes of in each packets. But for the proposed router, one packet of 1445 bytes is able 
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to achieve up to 52.097 kbps for downstream transmission and 54.335 kbps for 

upstream transmission. Hence, if the proposed router sends as many packets as the off-

the-shelf router, the data that can be transmitted in the proposed router is vertically 

scaled up by factor of 13.436 (
700 𝑘𝑏𝑝𝑠

52.097 𝑘𝑏𝑝𝑠
= 13.436) for downstream and 12.883 for 

upstream (
774 𝑘𝑏𝑝𝑠

54.335 𝑘𝑏𝑝𝑠
= 12.883). Vertical scaling is a method to translate a graph 

without losing the original properties where all y-values in the graph are multiplied by 

a specific factor. Therefore, for the proposed router, the throughput for each offered 

load is multiplied with 13.436 and 12.883 for downstream and upstream respectively.  

 It is expected that the throughput for the proposed router is lower than the off-the-

shelf router because off-the-shelf router has higher specifications, processing power 

and price. The differences in bandwidth values for both off-the-shelf router and 

proposed router are not of our concern because the one of the objectives of this project 

is to create a simple and fast reconfigurable router testbed that supports FiWi 

transmission and able to serve as FiWi educational module as stated in Appendix D. 

 

Figure 4.1 Downstream throughput 
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Figure 4.2 Upstream throughput 

4.2.2 End-to-end delay 

This section explains the end-to-end delay of the wireless router. End-to-end delay is 

the delay between a client to another client via a pair of proposed routers. From the 

graph in Figure 4.3, the end-to-end delay increases as the data size increases for both 

upstream and downstream transmissions. This is as expected because larger data size 

requires more processing time. Based on Figure 4.3, the downstream end-to-end delay 

starts from 0.13 s at 100 bytes to 0.19 s at 1445 bytes. Whereas upstream end-to-end 

delay starts from 0.14 s at 100 bytes to 0.19 s at 1445 bytes. For both graphs, the end-

to-end delay increases because the proposed router needs more time to process as the 

data size getting bigger. In Figure 4.3, the end-to-end delay at 1445 bytes has sudden 

increase from 1400 bytes. This is due to the proposed router that has reached its 

processing limit due to hardware limitations. Upstream transmission has higher end-

to-end delay compared to downstream transmission. However, there are not much 

difference between downstream and upstream delay which is only about 8 ms. Despite 

this difference, the end-to-end delay is acceptable due to the trend of both graphs 

satisfying the behaviour of the trend of end-to-end delay in IEEE 802.15.4 routing 

scheme [99] where it increases as the data size increases. Hence, it can be concluded 

that, the proposed router is suitable to be a wireless router for research and educational 

purposes because the behaviour of the graph is satisfying the nature of typical router.  
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Figure 4.3 End-to-end delay for wireless transmission 

4.2.3 Jitter 

The downstream and upstream jitter graphs for the wireless router are shown in Figure 

4.4 and Figure 4.5 respectively. The purpose of analysing the jitter of the proposed 

router is to check whether the jitter values are in the acceptable range. Jitter is defined 

as the variation in time between packets arriving, caused by network congestion, 

timing drift, or route changes. The lower the jitter, the better the performance of the 

system can be. The jitter, J is calculated in Equation 4.2. In which, Packet Delay 

Variation (PDV) is achieved by using Equation 4.3. According to [100], Di,j is the time 

of a transmission i, in transmitter j and Np is the total number of receiving packets. 

Dave is the average transmission time of i in transmitter j that is achieved by using 

Equation 4.4. 

                                                       𝐽𝑖𝑡𝑡𝑒𝑟, 𝐽 (𝑠) =  √𝑃𝐷𝑉                                                 (4.2) 

 

                                                      𝑃𝐷𝑉 =  
∑ (𝐷𝑖,𝑗− 𝐷𝑎𝑣𝑒)2𝑁𝑝

𝑐=1

𝑁𝑝
                                                (4.3)  

 

                                                            𝐷
𝑎𝑣𝑒= 

∑ 𝐷𝑖,𝑗
𝑁𝑝
𝑐=1

𝑁𝑝

                                                          (4.4) 
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In Figure 4.4 and Figure 4.5, there is no observable trend of graph can be monitored 

unlike end-to-end delay and throughput. This is because the jitter relates to the 

variation in the end-to-end delay. Therefore, the jitter varies throughout the 

transmitted data. In Figure 4.5, the jitter varies from 0.929 ms to 9.80 ms. The high 

jitter at 1445 bytes is caused by the high end-to-end delay as shown in Figure 4.3. 

Meanwhile the jitter graph in Figure 4.6, the values vary from 1.57 ms to 6.73 ms. 

Based on Figure 4.6, the highest jitter is shown at 1445 bytes. This is due to the end-

to-end delay graph in Figure 4.4, 1445 bytes gives the highest end-to-end delay. In this 

wireless transmission, it can be concluded that the jitter relates closely with the delay 

in which when the delay is high. Moreover, despite there is no observable trend of 

jitter graphs, the jitter values are still within the acceptable range because according 

to Cisco in [101], the acceptable jitter values must be below 30 ms. Hence, proving 

that the proposed testbed is suitable to be used as a wireless router. 

 

Figure 4.4 Proposed router downstream jitter 
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Figure 4.5 Proposed router upstream jitter 

4.3 Fiber Transmission Performance Test 

The setup for this test is similar to the wireless performance test but instead of using 

wireless transmission, the data are transmitted by using fiber. The throughput of the 

testbed is validated with industrial grade router. The data size for the industrial grade 

router is initially set at 10 MB and it is increased by 10 MB for each transmission until 

it reaches 100 MB. The limit is set at 100 MB because 100 MB is a reasonable 

maximum data size for 1 Gb data size considering the total bandwidth needs to include 

the packet headers as well. The throughput of the transmission is recorded by using 

Wireshark. 

4.3.1 Throughput 

Figure 4.6 and Figure 4.7 show throughput graphs for downstream and upstream 

transmissions respectively between industrial grade router and the proposed router. 

For a packet of 1445 bytes, the throughput of proposed router is 92 kbps and 91 kbps 

for downstream and upstream respectively. Then, the scaling method used same as in 

wireless transmission. The graphs show that the throughput of proposed router have 

similar increasing trends with industrial grade routers as the offered load increases. 

Hence, the performance of the proposed router is validated. In Figure 4.6, the trends 

of the throughput for proposed router and industrial grade router for downstream are 

increasing as the offered load increases. For proposed router, the throughput increases 
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throughput for industrial grade router increases from 0 bps at 0% offered load to 540 

Mbps at 80% offered load. However, at 50% of offered load, the throughput of the 

industrial grade router is increasing at slower rate because it approaches the limit of 

the bandwidth. Then, at 80% of the offered load, the throughput is stagnant until 100% 

of offered load. It is due to the bandwidth has been fully utilized.  

Meanwhile in Figure 4.7, the trends of the throughput for both proposed router and 

industrial grade router for upstream are also increasing as the offered load increases. 

In Figure 4.7, the throughput of proposed router increases from 0 bps at 0% offered 

load to 785 Mbps at 100% offered load. Meanwhile, the throughput for industrial grade 

router increases from 0 bps at 0% offered load to 480 Mbps at 60% because the 

throughput of the industrial grade router reaches its limit at 60% of the offered load. 

The reason of why the proposed router’s throughput keeps increasing for both graphs 

is because there is no QoS in the proposed router. On the other hand, the industrial 

grade router has QoS to prevent congestions. Hence, it limits the maximum throughput 

to reserve the bandwidth in case of flooding. From the validation, we can conclude 

that the trends of the proposed router are correct. It is expected that the industrial grade 

router has higher throughput before 60% of offered load because it has greater 

specifications and data processing power compared to proposed router. 

 

Figure 4.6 Downstream throughput 
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Figure 4.7 Upstream throughput 

4.3.2 End-to-end delay 

This section explains the end-to-end delay of the proposed router in fiber transmission. 

Based on the graph in Figure 4.8, the end-to-end delays are increasing as the data size 

increases for downstream and upstream transmissions. This is due to more time taken 

to process the data when the data are transmitted. There is not much change in delay 

for both downstream and upstream. This is due to the bandwidth in fiber is large, but 

the transmitted data size is small. In Figure 4.8, the minimum downstream end-to-end 

delay is 0.122 s at 100 bytes, while the maximum end-to-end delay is 0.126 s at 1445 

bytes. As for upstream transmission, the minimum end-to-end delay is 0.123 s at 100 

bytes, while the maximum end-to-end delay is 0.126 s at 1445 bytes. The end-to-end 

delay is expected to be higher than a typical fiber-supported router like industrial grade 

router because of hardware limitation. Furthermore, one of the objectives of this thesis 

is to create a reconfigurable router testbed that supports fiber transmission for 

educational module. 
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Figure 4.8 End-to-end delay for fiber transmissions 

4.3.3 Jitter 

The jitter for downstream and upstream transmissions are calculated using Equation 

4.2, Equation 4.3 and Equation 4.4. The jitter graphs for downstream and upstream are 

shown in Figure 4.9 and Figure 4.10 respectively. In Figure 4.9 and Figure 4.10, there 

is no observable trend like end-to-end delay and throughput. This is because the jitter 

relates to the variation of end-to-end delay for each transmitted data. If the variation 

is high, then the jitter is high and otherwise. For downstream jitter ranges from 0.04 

ms to 0.38 ms. The jitter reaches its peak at 0.38 ms which is when 1200 bytes is 

transmitted. Whereas, the jitter for upstream transmission ranges from 0.12 ms to 0.49 

ms. The jitter reaches its peak for upstream transmission is when 1445 bytes is 

transmitted which is at 0.49 ms. Based on these values, it can be concluded that the 

transmission for fiber is stable because the jitter values are very small due to large 

bandwidth and minimal noise in fiber. The jitter values are below 30 ms which is 

within acceptable range [101]. This proves that the testbed is suitable to be used as 

fiber-based router. 
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Figure 4.9 Downstream jitter 

 

Figure 4.10 Upstream jitter 
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throughput of the FiWi proposed router is validated with industrial grade router. The 
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This is because the industrial grade router is connected to an access point to match its 

setup with the proposed router setup. Therefore, the actual bandwidth is 1 Mbps. 

4.4.1 Throughput 

Figure 4.11 and Figure 4.12 show the throughput graphs for downstream and upstream 

transmission respectively. The purpose of this validation is to observe the correctness 

of the proposed router. For a packet of 1445 bytes, the throughput of proposed router 

is 79.8 kbps and 93 kbps for downstream and upstream respectively. Then, the scaling 

method used same as in wireless transmission. Based on the graphs, the throughput of 

the proposed router has similar increasing trend as the industrial grade router. This 

shows that the transmission of the proposed router is correct. Based on Figure 4.11, 

the throughput for proposed router increases from 0 bps at 0% offered load to 719 kbps 

at 100% offered load. Meanwhile, the throughput of industrial grade router increases 

from 0 bps at 0% offered load to 697 kbps at 90%. However, the throughput of the 

industrial grade router decreases at 100% offered load. Based on Figure 4.12, the 

throughput of the proposed router increases as the offered load increases from 0 bps 

at 0% offered load to 770.351 kbps at 100% offered load. Meanwhile, the throughput 

for industrial grade router is also increasing from 0 bps at 0% to 774 kbps at 100% 

offered load. 

In Figure 4.11, the throughput of the industrial grade router decreases at 100% offered 

load because the router has reached its bandwidth limit. Meanwhile, the throughput of 

the proposed router is keep increasing. As mention earlier, this is due to the proposed 

router does not have QoS, whereas, the industrial grade router has QoS algorithm to 

limit the maximum throughput. Overall, the throughput of the proposed router is lesser 

than industrial grade router due to its limited specs, bandwidth and processing power. 

This is expected because the proposed router is built for lab-scale experiment, but, the 

industrial grade router is meant for industrial purposes. From the graph, we can 

conclude that the trend of the proposed router is correct. Unlike individual throughput 

of fiber and wireless, the throughput of FiWi has a bottleneck at the wireless side of 

the setup. Hence, the throughput is limited at around 700 kbps. 
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Figure 4.11 Downstream throughput 

 

Figure 4.12 Upstream throughput 

4.4.2 End-to-end delay 

Figure 4.13 show the end-to-end delay for downstream and upstream transmissions in 
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The end-to-end delay for both downstream and upstream increases because as the data 

size increases, the router takes longer time to process the data. The reason why there 

are not many differences in the graphs is because the data size is very small for a large 

bandwidth of fiber which is 1 Gbps. Furthermore, the data is transmitted by using light 

pulses in fiber. Hence, it transmits faster compared to electrical pulses in copper. For 

example, during downstream transmission, the end-to-end delay at 100 bytes is 0.1245 

s, whereas at 200 bytes the end-to-end delay is 0.1249 s. The overall end-to-end delay 

for downstream is higher than upstream as expected in [102]. However, even though 

the end-to-end delay of the proposed testbed is higher, but, its increasing trend 

complies with the trend in IEEE 802.15.4 routing scheme [99]. It is expected to be 

higher than the standard because of hardware limitation. Furthermore, one of the 

objectives of this thesis is to create a reconfigurable router testbed that supports fiber-

wireless transmission for educational module. 

 

Figure 4.13 End-to-end delay for FiWi transmission 
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because the delay variations between transmitted data are not consistent. For example, 

the jitter from 900 bytes to 1000 bytes decreases because the delay variation from 1000 

bytes is smaller than 900 bytes. Whereas, the delay variation from 1000 bytes to 1100 

bytes increases, hence the jitter increases. Based on the graph, the jitter values are 

having a huge gap from 1300 bytes to 1445 bytes ranging from 2.49 ms to 8.25 ms 

because the proposed router is reaching its limit, hence making the data transmission 

unstable which causes the delay variation to be high. Based on Figure 4.15, the jitter 

graph for upstream transmission varies from 0 s at 0 bytes to 0.108 ms at 800 bytes. 

This is due to the upstream transmission is done right after the downstream 

transmission. Therefore, the hardware became heated causing the transmission not 

stable. Hence, there is the inconsistency in the jitter graph for upstream transmission. 

Despite there not observable trend in both graphs, the jitter values are acceptable 

because according to Cisco, the jitter values must be below 30 ms. 

 

Figure 4.14 Downstream jitter 
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Figure 4.15 Upstream jitter 
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downstream transmission, the throughput for a single traffic is 6.42 kbps whereas the 

throughput for two traffics is 3.21 kbps. This statement is supported by Xu et al. [103] 

where more traffics contribute to less throughput.  

 

Figure 4.16 Downstream throughput 

 

Figure 4.17 Upstream throughput 
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0.249 s at 100 bytes to 0.293 s at 1445 bytes. The increasing trend of the graph is due 

to increasing values of data size. At 1445 bytes, there is a sudden increase of end-to-

end delay. This is due to the proposed router is at its limit of processing two traffics 

simultaneously. Theoretically, when number of traffics increases, the end-to-end delay 

also increases [104]. Therefore, comparing the graph in Figure 4.19, the end-to-end 

delay of two traffics is twice as big as single traffic. This is due to the proposed router 

needs to process the data twice compared to a single traffic which the proposed router 

processes the data only once. For example, the end-to-end delay at 1445 bytes for 

single traffic and two traffics are 144.838 ms and 293.01 ms respectively. 

Based on Figure 4.19, the upstream end-to-end delay graph increases from 243.863 

ms at 100 bytes to 248.591 ms at 1445 bytes. Like downstream transmission, the end-

to-end delay for upstream transmission is twice as high as single traffic. This is due to 

the proposed router needs to process the data twice compared to a single traffic. For 

example, at 1445 bytes, the end-to-end delay for two traffics and single traffic are 

248.591 ms and 124.296 ms respectively. Hence, we can conclude that even though 

the trends of the graphs are looking constant, but, actually it is increasing as the data 

increases. The constant trends of the graphs are due to the presence of fiber which 

make the difference in end-to-end delay between two data such as 100 bytes and 200 

bytes are not significant. 

 

Figure 4.18 Downstream end-to-end delay 
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Figure 4.19 Upstream end-to-end delay 

4.5.3 Jitter 
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having higher jitter compared to a single traffic, the jitter values for two traffics are 

still within acceptable range. Hence, we can conclude that the testbed is scalable.  

 

Figure 4.20 Downstream jitter 

 

Figure 4.21 Upstream jitter 
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4.6.1 Fiber-Wireless-Fiber Performance Test 

Figure 4.22 shows the downstream and upstream throughput for Fi-WiFi network. 

Based on Figure 4.22, the downstream throughput increases as the data size increases 

from 2.626 kbps at 100 bytes to 22.403 kbps at 1445 bytes. Meanwhile, upstream 

throughput graph is increasing up until 1100 bytes only. Then, the graph becomes 

unstable from 1200 bytes to 1300 bytes. Then, the throughput continues to decrease 

from 1400 bytes to 1455 bytes. 

Even though the downstream throughput is increasing, but the gradient of the graph is 

gradually decreasing starting at 700 bytes. Whereas the upstream throughput becomes 

unstable at 1200 bytes to 1300 bytes because the proposed router is almost at its limit. 

Furthermore, the instability of throughput at these points is because the gradient of the 

graph of the upstream end-to-end delay suddenly gets bigger at 1200 bytes. Then, the 

gradient of the graph of upstream end-to-end delay becomes smaller at 1300 bytes 

causing the upstream throughput at 1300 bytes to increase. Then, the throughput 

decreases at 1400 bytes and 1445 bytes due to the sudden increase of upstream end-

to-end delay at 1400 bytes in and it continues to increase until 1445 bytes. 

 

Figure 4.22 Fi-WiFi downstream throughput 
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end-to-end delay increases as the data size increases from 0.505 s at 100 bytes to 0.948 

s at 1445 bytes. The end-to-end delay for this setup is higher than the other setup, such 

as FiWi and wireless. This is because the data has to undergo multiple routers and 

medium conversions from fiber to wireless and then wireless to fiber. For downstream 

transmission, there is a sudden increase in end-to-end delay at 1400 bytes. This is due 

to the proposed router is already approaching its limit. Hence, the data processing time 

takes longer at this point. 

 

Figure 4.23 Fi-WiFi end-to-end delay 
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transmission is 32.087 kbps. At 1445 bytes, the performance for both downstream and 

upstream transmissions are slightly decreased based on the slope of the graph at this 

point. This is due to the proposed router has reached its limit. Despite some differences 

in throughput values, the throughput for downstream and upstream do not have much 

difference proving that the proposed router in Wi-FiWi is stable for both 

transmissions. Therefore, it can be concluded that this proposed router is suitable to 

be a scalable testbed. 

 

Figure 4.24 Wi-FiWi throughput 

Figure 4.25 shows the end-to-end delay of downstream and upstream transmissions 

respectively for Wi-FiWi network. The trend of the downstream end-to-end delay 

increases as the transmitted data size increases from 0.565 s at 100 bytes to 0.607 s at 

1445 bytes. In Figure 4.25, there is a sudden increase to the downstream end-to-end 

delay at 1200 bytes. This is due to the proposed router is already approaching its limit. 

Hence, the data processing time takes longer at this point. Meanwhile, the trend of the 

uupstream end-to-end delay increases as the transmitted data increases from 0.569 s 

at 100 bytes to 0.603 s at 1445 bytes. The downstream and upstream end-to-end delay 

for Wi-FiWi network is also higher than wireless, fiber and FiWi network because 

there are more medium changes in between clients. Therefore, the process of medium 

conversion contributes to higher end-to-end delay.  
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Figure 4.25 Wi-FiWi end-to-end delay 

4.6.3 Fi-WiFi and Wi-FiWi performance comparison 

Figure 4.26 and Figure 4.27 show the comparisons in terms of throughput between Fi-

WiFi and Wi-FiWi for downstream and upstream transmissions from 100 bytes to 

1445 bytes. Both graphs show that the performance for Wi-FiWi is more stable than 

Fi-WiFi based on the behaviour of the graphs. This is because Fi-WiFi has more 

conversion from electrical pulses to light pulses and vice versa compared to Wi-FiWi 

causing instability in Fi-WiFi. Therefore, we can conclude that, the overall 

performance in Wi-FiWi is more stable because it has better observable graphs 

compared to Fi-WiFi. 

 

Figure 4.26 Fi-WiFi vs Wi-FiWi downstream throughput 
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Figure 4.27 Fi-WiFi and Wi-FiWi upstream throughput 

Figure 4.28 and Figure 4.29 show the end-to-end delay comparisons between Fi-WiFi 

and Wi-FiWi for downstream and upstream transmissions. Both of them have 

increasing end-to-end delay when the transmitted data size increased from 100 bytes 

to 1445 bytes. However, Fi-WiFi architecture has higher delay than Wi-FiWi. This is 

because in Fi-WiFi, there are more FMCs compared to Wi-FiWi. Hence, the medium 

conversions from light pulses to electrical pulses or vice versa in Fi-WiFi is more than 

Wi-FiWi. Thus, it contributes more delay. From the graphs, we can conclude that Wi-

FiWi has more stable transmission because throughout the transmissions, the end-to-

end delay do not change much. 

 

Figure 4.28 Fi-WiFi vs Wi-FiWi downstream end-to-end delay 
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Figure 4.29 Fi-WiFi vs Wi-FiWi upstream end-to-end delay 

4.7 Summary 

In this chapter, the testbed’s performance using wireless, fiber, and FiWi are 
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FiWi due to more electrical pulses to light pulses conversion and vice versa from FMC 

in Fi-WiFi. Furthermore, Wi-FiWi is more stable compared to Fi-WiFi. With that, 

after the results are validated, it is proven that the proposed testbed is suitable to be a 

simple, reconfigurable, low cost, and fast implementation wireless, fiber and FiWi 

router. It is also suitable to be implemented in various setups proving that the testbed 

is scalable. The next chapter will discuss on future works and conclusion. 
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CHAPTER 5  

 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

FiWi is seen to be one of the best technologies for future global data communication 

network architecture due to the advantages of providing robustness and mobility to the 

consumers by deploying fiber and wireless in one network. Therefore, consumers can 

have better Internet connection and services. Hence, FiWi network is able to provide 

a promising solution for future networking technologies. From the literature, it can be 

concluded that there are still ongoing research in order to enhance FiWi current 

technology either only a part of FiWi such as fiber and wireless or the whole 

architecture. Due to that reasons, researchers are motivated to conduct intensive 

experiments by developing lab-scale testbed and industrial-scale testbed. The focus of 

this thesis is on lab-scale environment router testbed in FiWi architecture because to 

provide a proof-of-concept solution on reconfigurable router testbed in FiWi network. 

Three types of router testbeds exist; software-based router, commercial routers and 

embedded system-based routers. Embedded system-based router is the most 

appropriate choice for this thesis due to the open source kernel, reconfigurability, 

scalability, space-friendly and cost efficient. 

Raspberry Pi is chosen to be the embedded system hardware in this project in order to 

develop a scalable and reconfigurable FiWi routers. It also has a module called socket 

which makes this project feasible. The module enables the user to program Raspberry 

Pi to communicate with each other by using IP addresses. The architecture of the 

testbed is in tree topology because it is the typical architecture in FiWi. The setup 

comprises of four Raspberry Pi routers; one acts as source router and the other three 

as destinations. Each router comprises of four Raspberry Pis; one Header Pi and three 

Forwarding Pi, which are connected via two Ethernet switches to represent the internal 

connection of the router and external connection to other routers. Whereas for wireless 

router, an additional AP is used as the antennae of the router. The role Header Pi in 

the router is to check the destination decided by the sender and insert a label onto the 
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data that represents the destination. Then, the labelled data is forwarded to Forwarding 

Pi so that the data can be forwarded to the destination. Header Pi also checks the 

incoming data whether the data belongs to the correct router or not by comparing the 

labels on the data with its self-label. Since there are no specific port for fiber on the 

Raspberry Pi, FMCs are used to interconnect one router with the other via fiber patch 

cord. After the FiWi setup is complete, the performance test of the testbed for wireless 

transmission, fiber transmission and FiWi transmission are tested in terms of 

throughput, end-to-end delay and jitter for upstream and downstream transmissions. 

By using the same design and performance parameters, the stress test is also conducted 

on the testbed by sending two traffics simultaneously. Then, the architecture of the 

testbed is reconfigured to Fi-WiFi and Wi-FiWi to test the router’s scalability. The 

program of each router also needs to be reconfigured in terms of labels so that it works 

as intended. The performance of Fi-WiFi and Wi-FiWi are tested in terms of end-to-

end delay and throughput. 

In wireless transmission, the throughput of the proposed router is scaled up with the 

throughput of the off-the-shelf router. Whereas in fiber and FiWi transmissions, the 

throughput of the proposed router is scaled up with the throughput of industrial grade 

routers. This scaling method is done to check the proposed router functionality and to 

observe its correctness. The results show that, after the scaling method, the throughput 

of the proposed router has similar increasing trend with throughput of the off-the shelf 

router and industrial grade router, where, as the offered load increases, the throughput 

increases. This proves that the proposed router behaves correctly as intended. For end-

to-end delay, the behaviour of the results for all transmissions are verified with IEEE 

802.15.4 routing scheme, where, as the data size increases, the end-to-end delay 

increases. This behaviour is due to the proposed router requires more processing time 

as the data size increases. As for the jitter, the results for each transmission is verified 

with Cisco, where, the jitter values for proposed routers are below 30 ms, which is still 

within the acceptable range. In FiWi network, the proposed router is able to achieve 

maximum jitter of 8.25 ms for downstream and 0.11 ms for upstream. Hence, the 

proposed router is suitable to be wireless, fiber and FiWi router. 
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In stress test, the end-to-end delay of the proposed router is increasing as the data size 

increases. However, the proposed router shows that it requires the double amount of 

end-to-end delay compared to a single traffic. As for the throughput, it shows that the 

throughput is halved compared to a single traffic. This is due to the proposed router 

requires to process the data twice compared to a single traffic. Meanwhile, the jitter 

shows that two traffics have higher values compared to a single traffic. However, 

despite having higher jitter, it is still within the acceptable range which is below 30 ms 

which is 11.22 ms for downstream and 0.21 ms for upstream. Hence, this process that 

the proposed router is scalable. 

In Fi-WiFi and Wi-FiWi architectures, the performance of the proposed router is tested 

in order to check its scalability and stability. The results show that the end-to-end delay 

for both architectures are increasing as the data size increases. However, at a certain 

point, the values become unstable. This is due to the proposed router is reaching its 

limit as the data size increases. The throughput of the proposed router in these 

architectures show an increasing trend as the data size increases. However, at a certain 

point, the throughput decreases because the proposed router has reached the limit. The 

end-to-end delay results for these two architectures are compared in order to check 

which architecture has more stability. The results show that Wi-FiWi has more 

stability compared to Fi-WiFi because it has lesser optical to electrical conversions 

and vice versa. This can be proven by observing the consistent trend of the end-to-end 

delay in Wi-FiWi. Hence, this proves that the proposed router is not only scalable, but 

also flexible and stable. The summary of performance for FiWi, Fi-WiFi and Wi-FiWi 

are tabulated in Table 5.1. 
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Table 5.1 Results summary 

Topology Parameters 

Throughput End-to-end delay Maximum jitter  

(< 30 ms) 

Wireless - 677 kbps at 100% 

offered load 

(downstream) 

- 752 kbps at 100% 

offered load 

(upstream) 

- 0.19 s at 1445 

bytes (downstream) 

- 0.19 s at 1445 

bytes (upstream) 

- 9.8 ms 

(downstream) 

- 6.3 ms (upstream) 

Fiber - 767 Mbps at 100% 

offered load 

(downstream) 

- 785 Mbps at 100% 

offered load 

(upstream) 

- 0.126 s at 1445 

bytes (downstream) 

- 0.123 s at 1445 

bytes (upstream) 

- 0.38 ms 

(downstream) 

- 0.49 ms (upstream) 

FiWi - 719 kbps at 100% 

offered load 

(downstream) 

- 770 kbps 

(upstream) at 100% 

offered load 

- 0.144 s at 1445 

bytes (downstream) 

- 0.124 s at 1445 

bytes (upstream) 

- 8.25 ms 

(downstream) 

- 0.11 ms (upstream) 

FiWi stress test - 39.45 kbps at 1445 

bytes (downstream) 

- 46.50 kbps at 1445 

bytes (upstream) 

- 0.29 s at 1445 

bytes (downstream) 

- 0.25 s at 1445 

bytes (upstream) 

- 11.22 ms 

(downstream) 

- 0.21 ms (upstream) 

Fi-WiFi - 22.403 kbps at 

1445 bytes 

(downstream) 

- 24.4 kbps at 1445 

bytes (upstream) 

- 1.03 s at 1445 

bytes (downstream) 

- 0.948 s at 1445 

bytes (upstream) 

- 

Wi-FiWi - 38.09 kbps at 1445 

bytes (downstream) 

- 38.35 kbps at 1445 

bytes (upstream) 

- 0.61 s at 1445 

bytes (downstream) 

- 0.60 s at 1445 

bytes (upstream) 

- 

 

Overall, a working reprogrammable, fast reconfigurable and scalable educational 

FiWi router testbed has been developed by using Raspberry Pi in a lab-scale 

environment. In wireless, fiber and FiWi architecture, the proposed router is proven to 

work correctly for downstream and upstream based on the scaling method. Its end-to-

end delay is acceptable because the increasing trend is satisfying the IEEE 802.15.4 

routing scheme. The jitter of the proposed router is also acceptable because the values 

are within an acceptable range produced by Cisco which is below 30 ms. In conclusion, 

it is proven that Raspberry Pi can be used to build a reconfigurable, flexible, and 

scalable educational FiWi router testbed. The proposed router also shows a promising 

stability in order to test various architectures. 
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5.2 Future Work and Recommendations 

The development of the FiWi testbed using Raspberry Pi has been deliberated in this 

thesis. The future works are as follows: 

• The overall throughput of the proposed testbed is small. There are better 

programmable embedded system hardware that can provide greater 

performance such as Raspberry Pi 4 which has just been released in June 2019. 

It is better than Raspberry Pi used in this project has Raspberry Pi 4 as it has 

better processor, RAM, and Ethernet capacity. In terms of processor, it uses 

Broadcom BCM2711 which is more powerful because it can process input and 

output data faster. Hence, more data can be processed at the same time which 

makes future proposed testbed to be more scalable than the current one. The 

processor also has metal cover which provides better heat dissipation. 

According to one of its website, Raspberry Pi 4 also has True Gigabit Ethernet, 

which means, the throughput produced is close to 1 Gbps [105]. In terms of 

RAM, Raspberry Pi 4 has maximum RAM capacity up to 4 GB which is four 

times bigger than current Raspberry Pi in proposed testbed. This makes the 

proposed testbed in the future to be able to handle more data at once. 

• Current proposed router is using a low-cost AP to provide a reconfigurable 

FiWi testbed in a lab-scale environment. Hence, it is more than sufficient to 

use current AP as a proof-of-concept first. Then, as for future work, a better 

AP that supports dual-band with greater bandwidth and wider coverage such 

as TP-LINK WR1043ND can be used, so that more data can be transmitted 

simultaneously through wireless transmission and it is more stable than current 

AP in the proposed router. Hence, future proposed testbed can be implemented 

in wider scale area to get better results. 

• Current proposed testbed has no protection for data transmission as it is only 

for proof-of-concept. Hence, for future work, physical link redundancy can be 

installed on the testbed to provide a better protection for data transmissions in 

case of broken link. 

 



109 

 

REFERENCES 

 

[1] Y. Yu, C. Ranaweera, C. Lim, L. Guo, Y. Liu, A. Nirmalathas, et al. (2017, 

June). Hybrid Fiber-Wireless Network: An Optimization Framework For 

Survivable Deployment. Journal of Optical Communications and Networking. 

9(6), pp. 466-478. 

[2] B. P. Rimal, M. Maier, and M. Satyanarayanan. (2018, Aug.). Experimental 

Testbed for Edge Computing in Fiber-Wireless Broadband Access Networks. 

IEEE Communications Magazine. 56(8), pp. 160-167. 

[3] V. Mishra, R. Upadhyay, and U. R. Bhatt, "A Review of Recent Energy-

Efficient Mechanisms for Fiber-Wireless (FiWi) Access Network" in Progress 

in Advanced Computing and Intelligent Engineering, Springer, 2018, pp. 539-

545. 

[4] J. Liu, H. Guo, H. Nishiyama, H. Ujikawa, K. Suzuki, and N. Kato. (2015, 

Nov.). New Perspectives on Future Smart FiWi Networks: Scalability, 

Reliability, and Energy Efficiency. IEEE Communications Surveys & 

Tutorials. 18(2), pp. 1045-1072. 

[5] Y. Liu, L. Guo, B. Gong, R. Ma, X. Gong, L. Zhang, et al. (2012, Mar.). Green 

Survivability in Fiber-Wireless (FiWi) Broadband Access Network. Optical 

Fiber Technology. 18(2), pp. 68-80. 

[6] Q. Dai, G. Shou, Y. Hu, and Z. Guo, "A General Model for Hybrid Fiber-

Wireless (FiWi) Access Network Virtualization," in 2013 IEEE International 

Conference on Communications Workshops (ICC), Hungary, 2013, pp. 858-

862. 

[7] H. Guo and J. Liu. (2018, Jan.). Collaborative Computation Offloading for 

Multi-Access Edge Computing Over Fiber–Wireless Networks. IEEE 

Transactions on Vehicular Technology. 67(5), pp. 4514-4526. 

[8] Z. Zhang, J. Kong, C. Huang, Q. Wu, J. Wu, and J. Li, "Virtual Network 

Embedding Algorithm Considering Resource Fragmentation in Virtualized 

Industrial Fiber-Wireless (FiWi) Access Network," in Proceedings of the 

International Conference on Imaging, Signal Processing and Communication, 

Malaysia, 2017, pp. 148-152. 



110 

 

[9] H. Beyranvand, W. Lim, M. Maier, C. Verikoukis, and J. A. Salehi. (2015, 

Feb.). Backhaul-Aware User Association in FiWi Enhanced LTE-A 

Heterogeneous Networks. IEEE Transactions on Wireless Communications. 

14(6), pp. 2992-3003. 

[10] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb. (2018, 

June). Survey On Multi-Access Edge Computing For Internet of Things 

Realization. IEEE Communications Surveys & Tutorials. 20(4), pp. 2961-

2991. 

[11] W. Sun, J. Liu, and H. Zhang. (2017, June). When Smart Wearables Meet 

Intelligent Vehicles: Challenges and Future Directions. IEEE Wireless 

Communications. 24(3), pp. 58-65. 

[12] B. P. Rimal, D. P. Van, and M. Maier. (2017, May). Mobile-Edge Computing 

Versus Centralized Cloud Computing Over A Converged FiWi Access 

Network. IEEE Transactions on Network and Service Management. 14(3), pp. 

498-513. 

[13] P.-Y. Chen and M. Reisslein. (2018, Apr.). FiWi Network Throughput-Delay 

Modeling with Traffic Intensity Control and Local Bandwidth Allocation. 

Optical Switching and Networking. 28(pp. 8-22. 

[14] B. P. Rimal, D. P. Van, and M. Maier. (2017, Feb.). Mobile Edge Computing 

Empowered Fiber-Wireless Access Networks in The 5G Era. IEEE 

Communications Magazine. 55(2), pp. 192-200. 

[15] H.-H. Lu, C.-Y. Li, T.-C. Lu, C.-J. Wu, C.-A. Chu, A. Shiva, et al. (2016, 

Feb.). Bidirectional Fiber-Wireless and Fiber-VLLC Transmission System 

Based On An OEO-Based BLS and A RSOA. Optics Letters. 41(3), pp. 476-

479. 

[16] M. Tornatore, G.-K. Chang, and G. Ellinas, Fiber-Wireless Convergence in 

Next-Generation Communication Networks. Davis, USA, Springer, 2017, pp. 

3-395. 

[17] J. Liu, H. Guo, Z. M. Fadlullah, and N. Kato. (2016, Nov.). Energy 

Consumption Minimization for FiWi Enhanced LTE-A HetNets with UE 

Connection Constraint. IEEE Communications Magazine. 54(11), pp. 56-62. 

[18] N. Choosri, Y. Park, S. Grudpan, P. Chuarjedton, and A. Ongvisesphaiboon. 

(2015, Mar.). IoT-RFID Testbed for Supporting Traffic Light Control. 



111 

 

International Journal of Information and Electronics Engineering. 5(2), pp. 

102-106. 

[19] W. Hurst, N. Shone, A. El Rhalibi, A. Happe, B. Kotze, and B. Duncan, 

"Advancing The Micro-CI Testbed for IoT Cyber-Security Research and 

Education," in The Eighth International Conference on Cloud Computing, 

GRIDs, and Virtualization, Greece, 2017, pp. 129-134. 

[20] Z. Gong, W. Xue, Z. Liu, Y. Zhao, R. Miao, R. Ying, et al., "Design of a 

Reconfigurable Multi-Sensor Testbed for Autonomous Vehicles and Ground 

Robots," in 2019 IEEE International Symposium on Circuits and Systems 

(ISCAS), Japan, 2019, pp. 1-5. 

[21] M. Ridwan, N. A. M. Radzi, F. Abdullah, N. M. Din, and C. Rashidi. (2018, 

Sep.). Feasibility Study of a Reconfigurable Fiber-Wireless Testbed Using 

Universal Software Radio Peripheral. International Journal of Engineering and 

Technology Innovation. 8(4), pp. 274-283. 

[22] S. T. Abraha, D. F. Castellana, X. Liang, A. Ng'oma, and A. Kobyakov, 

"Experimental Study of Distributed Massive MIMO (DM-MIMO) in In-

building Fiber-Wireless Networks," in 2018 Optical Fiber Communications 

Conference and Exposition (OFC), USA, 2018, pp. 1-3. 

[23] M. Maier and N. Ghazisaidi, FiWi Access Networks. Cambridge university 

press, 2011, pp. 1-236. 

[24] N. Ghazisaidi and M. Maier. (2011, Jan.). Fiber-wireless (FiWi) Access 

Networks: Challenges and Opportunities. IEEE network. 25(1), pp. 36-42. 

[25] P. Singh and S. Prakash. (2017, Jul.). Optical Network Unit Placement In 

Fiber-Wireless (FiWi) Access Network by Moth-Flame Optimization 

Algorithm. Optical Fiber Technology. 36(pp. 403-411. 

[26] B. Kantarci, N. Naas, and H. T. Mouftah, "Energy-Efficient DBA and QoS in 

FiWi Networks Constrained To Metro-Access Convergence," in 2012 14th 

International Conference on Transparent Optical Networks (ICTON), UK, 

2012, pp. 1-4. 

[27] M. Lévesque, M. Maier, F. Aurzada, and M. Reisslein, "Analytical Framework 

for The Capacity and Delay Evaluation of Next-Generation FiWi Network 

Routing Algorithms," in 2013 IEEE Wireless Communications and 

Networking Conference (WCNC), China, 2013, pp. 1926-1931. 



112 

 

[28] S. Bindhaiq, A. S. M. Supa, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M. 

A. Elmagzoub, et al. (2015, Aug.). Recent Development On Time And 

Wavelength-Division Multiplexed Passive Optical Network (TWDM-PON) 

For Next-Generation Passive Optical Network Stage 2 (NG-PON2). Optical 

Switching and Networking. 15(pp. 53-66. 

[29] S. S. Ahmed and M. M. Islam. (2018, Dec.). A Technical Review on Optical 

Access Networks. Nonlinear Dynamics. 6(2), pp. 79-95. 

[30] D. Nesset. (2015, Dec.). NG-PON2 Technology and Standards. Journal of 

Lightwave Technology. 33(5), pp. 1136-1143. 

[31] Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, et al. (2012, Feb.). 

Time and Wavelength-Division Multiplexed Passive Optical Network 

(TWDM-PON) for Next-Generation PON Stage 2 (NG-PON2). Journal of 

Lightwave Technology. 31(4), pp. 587-593. 

[32] J. S. Wey, D. Nesset, M. Valvo, K. Grobe, H. Roberts, Y. Luo, et al. (2016, 

Jan.). Physical Layer Aspects of NG-PON2 Standards—Part 1: Optical Link 

Design. IEEE/OSA Journal of Optical Communications and Networking. 8(1), 

pp. 33-42. 

[33] D. Iida, S. Kuwano, J.-i. Kani, and J. Terada. (2013, Oct.). Dynamic TWDM-

PON for Mobile Radio Access Networks. Optics Express. 21(22), pp. 1-10. 

[34] S. Rajpal and R. Goyal. (2017, June). A Review On Radio-over-Fiber 

Technology-based Integrated (Optical/Wireless) Networks. Journal of Optical 

Communications. 38(1), pp. 19-25. 

[35] D. P. Van, B. P. Rimal, M. Maier, and L. Valcarenghi. (2016, Feb.). ECO-

FiWi: An Energy Conservation Scheme for Integrated Fiber-Wireless Access 

Networks. IEEE Transactions on Wireless Communications. 15(6), pp. 3979-

3994. 

[36] K. Ahmavaara, H. Haverinen, and R. Pichna. (2003, Nov.). Interworking 

Architecture Between 3GPP and WLAN Systems. IEEE Communications 

Magazine. 41(11), pp. 74-81. 

[37] M. Youssef and A. Agrawala, "The Horus WLAN Location Determination 

System," in The 3rd International Conference on Mobile Systems, 

Applications, and Services, Washington, 2005, pp. 205-218. 



113 

 

[38] Y. Mekonnen, M. Haque, I. Parvez, A. Moghadasi, and A. Sarwat, "LTE and 

Wi-Fi Coexistence in Unlicensed Spectrum with Application to Smart Grid: A 

Review," in 2018 IEEE/PES Transmission and Distribution Conference and 

Exposition (T&D), USA, 2018, pp. 1-5. 

[39] S. Radhakrishnan, S. Neduncheliyan, and K. K. Thyagharajan. (2016, Jan.). A 

Review of Downlink Packet Scheduling Algorithms for Real Time Traffic in 

LTE-Advanced Networks. Indian Journal of Science and technology. 9(4), pp. 

1-5. 

[40] M. A. Gadam, M. A. Ahmed, C. K. Ng, N. K. Nordin, A. Sali, and F. Hashim. 

(2016, Mar.). Review of Adaptive Cell Selection Techniques in LTE-

Advanced Heterogeneous Networks. Journal of Computer Networks and 

Communications. 2016(3), pp. 1-12. 

[41] S. Sakamoto, R. Obukata, T. Oda, L. Barolli, M. Ikeda, and A. Barolli. (2017, 

Nov.). Performance Analysis of Two Wireless Mesh Network Architectures 

by WMN-SA and WMN-TS Simulation Systems. Journal of High Speed 

Networks. 23(4), pp. 311-322. 

[42] Y. Liu, K.-F. Tong, X. Qiu, Y. Liu, and X. Ding, "Wireless Mesh Networks in 

IoT Networks," in 2017 International Workshop on Electromagnetics: 

Applications and Student Innovation Competition, UK, 2017, pp. 183-185. 

[43] B. Singh and D. Singh. (2016, June). A Review on Advantages and 

Applications of Radio over Fiber System. International Journal of Current 

Engineering and Technology. 6(3), pp. 1042-1044. 

[44] S. R. A. Sharma and S. Rana. (2017, Jul.). Comprehensive Study of Radio 

Over Fiber With Different Modulation Techniques–A Review. International 

Journal of Computer Applications. 170(4), pp. 22-25. 

[45] D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. 

Clark, et al. (2015, Nov.). Radio-over-Fiber Technologies for Emerging 

Wireless Systems. IEEE Journal of Quantum Electronics. 52(1), pp. 1-11. 

[46] C. Lim, Y. Tian, C. Ranaweera, T. A. Nirmalathas, E. Wong, and K.-L. Lee. 

(2018, Oct.). Evolution of Radio-Over-Fiber Technology. Journal of 

Lightwave Technology. 37(6), pp. 1647-1656. 

[47] U. R. Bhatt, A. Chhabra, and R. Upadhyay, "Fiber-Wireless (Fi-Wi) 

Architectural Technologies: A Survey," in 2016 International Conference on 



114 

 

Electrical, Electronics, and Optimization Techniques (ICEEOT), India, 2016, 

pp. 519-524. 

[48] G. Kalfas, N. Pleros, L. Alonso, and C. Verikoukis. (2016, Apr.). Network 

Planning for 802.11ad and MT-MAC 60 GHz Fiber-Wireless Gigabit Wireless 

Local Area Networks Over Passive Optical Networks. Journal of Optical 

Communications and Networking. 8(4), pp. 206-220. 

[49] D. P. Van, B. P. Rimal, J. Chen, P. Monti, L. Wosinska, and M. Maier. (2016, 

Nov.). Power-Saving Methods for Internet of Things over Converged Fiber-

Wireless Access Networks. IEEE Communications Magazine. 54(11), pp. 

166-175. 

[50] T. H. Szymanski and M. Rezaee, "An FPGA Controller for Deterministic 

Guaranteed-Rate Optical Packet Switching," in 2015 IFIP/IEEE International 

Symposium on Integrated Network Management (IM), Canada, 2015, pp. 

1177-1183. 

[51] H. Yang, J. Zhang, Y. Zhao, J. Wu, Y. Ji, Y. Lin, et al. (2016, Aug.). 

Experimental Demonstration of Remote Unified Control for OpenFlow-Based 

Software-Defined Optical Access Networks. Photonic Network 

Communications. 31(3), pp. 568-577. 

[52] H. Yang, J. Zhang, Y. Zhao, J. Han, Y. Lin, and Y. Lee. (2016, Feb.). SUDOI: 

Software Defined Networking for Ubiquitous Data Center Optical 

Interconnection. IEEE Communications Magazine. 54(2), pp. 86-95. 

[53] S. Okamoto, T. Sato, and N. Yamanaka, "Logical Optical Line Terminal 

Technologies Towards Flexible And Highly Reliable Metro And Access-

Integrated Networks," in Optical Metro Networks and Short-Haul Systems IX, 

United States, 2017, pp. 1-15. 

[54] R. S Luis, H. Furukawa, G. Rademacher, B. J Puttnam, and N. Wada, 

"Demonstration of an SDM Network Testbed for Joint Spatial Circuit and 

Packet Switching," in 2017 European Conference on Optical Communication 

(ECOC), Sweden, 2018, pp. 1-3. 

[55] J. Azofra, N. Merayo, J. C. Aguado, I. De Miguel, R. Durán, F. Ruíz, et al., 

"Implementation of A Testbed to Analysis A SDN Based GPON," in 2018 

European Conference on Optical Communication (ECOC), Italy, 2018, pp. 1-

3. 



115 

 

[56] M. S. Singh and V. Talasila, "A Practical Evaluation for Routing Performance 

of BATMAN-ADV And HWMN in A Wireless Mesh Network Testbed," in 

2015 International Conference on Smart Sensors and Systems (IC-SSS), India, 

2015, pp. 1-6. 

[57] A. R. Prusty, S. Sethi, and A. K. Nayak, "Testbed for Link Quality Assessment 

in Wireless Ad-hoc Sensor Network," in 2016 International Conference on 

Computing, Analytics and Security Trends (CAST), India, 2016, pp. 329-334. 

[58] A. Barolli, T. Oda, L. Barolli, and M. Takizawa, "Experimental Results of A 

Raspberry Pi and OLSR-Based Wireless Content Centric Network Testbed 

Considering OpenWRT OS," in 2016 IEEE 30th International Conference on 

Advanced Information Networking and Applications (AINA), Switzerland, 

2016, pp. 95-100. 

[59] P. Zhang, O. Landsiedel, and O. Theel, "MOR: Multichannel Opportunistic 

Routing for Wireless Sensor Networks," in Proceedings of the 2017 

International Conference on Embedded Wireless Systems and Networks, 

Sweden, 2017, pp. 36-47. 

[60] E. Jecan, C. Pop, Z. Padrah, O. Ratiu, and E. Puschita, "A Dual-Standard 

Solution for Industrial Wireless Sensor Network Deployment: Experimental 

Testbed and Performance Evaluation," in 2018 14th IEEE International 

Workshop on Factory Communication Systems (WFCS), Italy, 2018, pp. 1-9. 

[61] F. Pakzad, M. Portmann, T. Turletti, T. Parmentelat, M. N. Mahfoudi, and W. 

Dabbous, "R2Lab Testbed Evaluation for Wireless Mesh Network 

Experiments," in 2018 28th International Telecommunication Networks and 

Applications Conference, ITNAC 2018, Australia, 2019, pp. 1-6. 

[62] K.-K. Nguyen and M. Cheriet. (2016, Dec.). Virtual Edge-Based Smart 

Community Network Management. IEEE Internet Computing. 20(6), pp. 32-

41. 

[63] M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, et al. (2016, June). 

FBMC in Next-Generation Mobile Fronthaul Networks With Centralized Pre-

Equalization. IEEE Photonics Technology Letters. 28(18), pp. 1912-1915. 

[64] B. P. Rimal, D. P. Van, and M. Maier. (2017, Mar.). Cloudlet Enhanced Fiber-

Wireless Access Networks for Mobile-Edge Computing. IEEE Transactions 

on Wireless Communications. 16(6), pp. 3601-3618. 



116 

 

[65] J. Liu, G. Shou, Y. Liu, Y. Hu, and Z. Guo. (2018, May). Performance 

Evaluation of Integrated Multi-Access Edge Computing And Fiber-Wireless 

Access Networks. IEEE Access. 6(pp. 30269-30279. 

[66] Y. Turk and E. Zeydan. (2018, Oct.). An Experimental Measurement Analysis 

of Congestion Over Converged Fixed and Mobile Networks. Wireless 

Networks. pp. 1-16. 

[67] Y. Alfadhli, Y.-W. Chen, S. Liu, S. Shen, S. Yao, D. Guidotti, et al. (2019, 

Oct.). Latency Performance Analysis of Low Layers Function Split for 

URLLC Applications in 5G Networks. Computer Networks. 162(pp. 1-7. 

[68] M. Bahnasy, K. Idoudi, and H. Elbiaze. (2015, Apr.). OpenFlow and GMPLS 

Unified Control Planes: Testbed Implementation And Comparative Study. 

Journal of Optical Communications and Networking. 7(4), pp. 301-313. 

[69] T. M. Runge, D. Raumer, F. Wohlfart, B. E. Wolfinger, and G. Carle. (2015, 

Apr.). Towards Low Latency Software Routers. JNW. 10(4), pp. 188-200. 

[70] S. Rampfl, "Network Simulation and Its Limitations," in Proceeding zum 

Seminar Future Internet (FI), Innovative Internet Technologien und 

Mobilkommunikation (IITM) und Autonomous Communication Networks 

(ACN), 2013, pp.  

[71] R. G. Addie and J. P. R. Natarajan, "Netml-NS3-Click: Modeling of Routers 

in Netml/NS3 By Means of The Click Modular Router," in SimuTools, Greece, 

2015, pp. 293-295. 

[72] P. L. Suresh and R. Merz, "NS-3-Click: Click Modular Router Integration For 

NS3," in Proceedings of the 4th International ICST Conference on Simulation 

Tools and Techniques, Belgium, 2011, pp. 423-430. 

[73] P. Goswami, S. K. Ghosh, and D. Datta. (2015, Feb.). On Methodologies to 

Estimate Optical-Layer Power Consumption and Cost For Long-Haul WDM 

Networks With Optical Reach Constraint. Photonic Network 

Communications. 29(1), pp. 12-31. 

[74] K. Ohsugi, J. Takemasa, Y. Koizumi, T. Hasegawa, and I. Psaras. (2016, May). 

Power Consumption Model of NDN-based Multicore Software Router Based 

on Detailed Protocol Analysis. IEEE Journal on Selected Areas in 

Communications. 34(5), pp. 1631-1644. 



117 

 

[75] L. Xu, K. Xu, M. Shen, K. Ren, J. Fan, C. Guan, et al., "MINOS: Regulating 

Router Dataplane Actions In Dynamic Runtime Environments," in 

Proceedings of the ACM Turing 50th Celebration Conference, China, 2017, 

pp. 1-10. 

[76] M. A. Kourtis, G. Xilouris, V. Riccobene, M. J. McGrath, G. Petralia, H. 

Koumaras, et al., "Enhancing VNF Performance By Exploiting SR-IOV And 

DPDK Packet Processing Acceleration," in 2015 IEEE Conference on 

Network Function Virtualization and Software Defined Network, NFV-SDN 

2015, USA, 2016, pp. 74-78. 

[77] R. Rajesh, K. B. Ramia, and M. Kulkarni, "Integration of LwIP Stack Over 

Intel (R) DPDK for High Throughput Packet Delivery to Applications," in 

2014 Fifth International Symposium on Electronic System Design, 2014, pp. 

130-134. 

[78] M. M. Tajiki, B. Akbari, N. Mokari, and L. Chiaraviglio. (2018, Aug.). SDN-

based Resource Allocation In MPLS Networks: A Hybrid Approach. 

Concurrency and Computation Practice and Experience. 31(8), pp. 1-13. 

[79] J. I. Kim, N. J. Choi, T. W. You, H. Jung, Y. W. Kwon, and S. J. Koh. (2019, 

Mar.). Mobile-oriented Future Internet: Implementation And 

Experimentations Over EU–Korea Testbed. Electronics (Switzerland). 8(3), 

pp. 1-24. 

[80] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. (2000, Aug.). 

The Click Modular Router. ACM Transactions on Computer Systems (TOCS). 

18(3), pp. 263-297. 

[81] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. (1999, Dec.). The Click 

Modular Router. ACM SIGOPS Operating Systems Review. 33(5), pp. 217-

231. 

[82] S. M. Blair, F. Coffele, C. Booth, B. De Valck, and D. Verhulst. (2014, Aug.). 

Demonstration And Analysis of IP/MPLS Communications for Delivering 

Power System Protection Solutions Ssing IEEE C37. 94, IEC 61850 Sampled 

Values, And IEC 61850 GOOSE Protocols. 2014 CIGRE Session. pp. 1-8. 

[83] T. Feng, J. Bi, P. Xiao, and X. Zheng, "Hybrid SDN Architecture To Integrate 

With Legacy Control And Management Plane: An Experiences-based Study," 



118 

 

in 2015 IFIP/IEEE International Symposium on Integrated Network 

Management (IM), Canada, 2015, pp. 754-757. 

[84] A. Sgambelluri, F. Paolucci, A. Giorgetti, F. Cugini, and P. Castoldi. (2016, 

Jan.). Experimental Demonstration of Segment Routing. Journal of Lightwave 

Technology. 34(1), pp. 205-212. 

[85] K. Tantayakul, R. Dhaou, B. Paillassa, and W. Panichpattanakul, 

"Experimental Analysis in SDN Open Source Environment," in 2017 14th 

International Conference on Electrical Engineering/Electronics, Computer, 

Telecommunications and Information Technology (ECTI-CON), Thailand, 

2017, pp. 334-337. 

[86] Z. Chen, H. Zou, J. Yang, H. Jiang, and L. Xie. (2019, June). WiFi 

Fingerprinting Indoor Localization Using Local Feature-Based Deep LSTM. 

IEEE Systems Journal. pp. 1-10. 

[87] V. Sivaraman, A. Vishwanath, D. Ostry, and M. Thottan. (2016, Aug.). 

Greening Router Line-Cards via Dynamic Management of Packet Memory. 

IEEE Journal on Selected Areas in Communications. 34(12), pp. 3843-3853. 

[88] C. H. Hoo and A. Kumar, "ParaDiMe: A Distributed Memory FPGA Router 

Based On Speculative Parallelism and Path Encoding," in 2017 IEEE 25th 

Annual International Symposium on Field-Programmable Custom Computing 

Machines (FCCM), USA, 2017, pp. 172-179. 

[89] C. Concatto, J. A. Pascual, J. Navaridas, J. Lant, A. Attwood, M. Lujan, et al., 

"A CAM-free Exascalable HPC Router For Low-Energy Communications," in 

International Conference on Architecture of Computing Systems, Germany, 

2018, pp. 99-111. 

[90] D. Posch, B. Rainer, S. Theuermann, A. Leibetseder, and H. Hellwagner, 

"Emulating NDN-based Multimedia Delivery," in Proceedings of the 7th 

International Conference on Multimedia Systems, Austria, 2016, pp. 1-4. 

[91] B. Rainer, D. Posch, A. Leibetseder, S. Theuermann, and H. Hellwagner. 

(2016, Sep.). A Low-Cost NDN Testbed On Banana Pi Routers. IEEE 

Communications Magazine. 54(9), pp. 105-111. 

[92] P. Lech and P. Włodarski, "IoT WiFi Home Network Stress Test," in 

International Conference on Image Processing and Communications, Poland, 

2017, pp. 247-254. 



119 

 

[93] S. Y. Jang, B. H. Shin, and D. Lee, "Implementing a Dynamically 

Reconfigurable Wireless Mesh Network Testbed for Multi-Faceted QoS 

Support," in Proceedings of the 11th International Conference on Future 

Internet Technologies, China, 2016, pp. 95-98. 

[94] X. Piao, L. Huang, K. Yuan, J. Yuan, and K. Lei, "The Real Implementation 

of NDN Forwarding Strategy On Android Smartphone," in 2016 IEEE 7th 

Annual Ubiquitous Computing, Electronics & Mobile Communication 

Conference (UEMCON), USA, 2016, pp. 1-6. 

[95] V. Gupta, K. Kaur, and S. Kaur, "Developing Small Size Low-Cost Software-

Defined Networking Switch Using Raspberry Pi," in 50th Annual Convention 

of Computer Society of India : Next-Generation Networks, India, 2018, pp. 

147-152. 

[96] S. Brown, "An Analysis of Loss-free Data Aggregation for High Data 

Reliability in Wireless Sensor Networks," in 2017 28th Irish Signals and 

Systems Conference (ISSC), Ireland, 2017, pp. 1-6. 

[97] D-Link, Wireless N300 Access Point & Router - DAP 1360 Datasheet at 

ftp://ftp.dlink.ru/pub/Wireless/DAP-1360/Data_sh/DAP-

1360_A_E1_DS_v.2.5.4_09.09.14_EN.pdf  

[98] A. Minakhmetov, C. Ware, and L. Iannone, "Optical Networks Throughput 

Enhancement via TCP Stop-and-Wait on Hybrid Switches," in 2018 Optical 

Fiber Communications Conference and Exposition (OFC), San Diego, USA, 

2018, pp. 1-3. 

[99] E. Leão, C. Montez, R. Moraes, P. Portugal, and F. Vasques. (2017, May). 

Alternative Path Communication in Wide-Scale Cluster-Tree Wireless Sensor 

Networks Using Inactive Periods. Sensors. 17(5), pp. 1049. 

[100] M. Ridwan, "A Re-Programmable Testbed for Fiber Wireless Network Using 

NI-Sofware Defined Radio," Master in Electrical Engineering, Universiti 

Tenaga Nasional, Malaysia, 2017. 

[101] C. Hattingh and T. Szigeti, End-to-End QoS Network Design: Quality of 

Service in LANs, WANs, and VPNs. Cisco Press, 2004, pp. 1-768. 

[102] L. Kumar, A. Singh, and V. Sharma, "Convergence of Bidirectional PON with 

Single-Sink Wireless Sensor Network Using Queue Theory" in Ambient 

Communications and Computer Systems, Springer, 2018, pp. 249-259. 

ftp://ftp.dlink.ru/pub/Wireless/DAP-1360/Data_sh/DAP-1360_A_E1_DS_v.2.5.4_09.09.14_EN.pdf
ftp://ftp.dlink.ru/pub/Wireless/DAP-1360/Data_sh/DAP-1360_A_E1_DS_v.2.5.4_09.09.14_EN.pdf


120 

 

[103] H. Xu, X.-Y. Li, L. Huang, H. Deng, H. Huang, and H. Wang. (2017, Feb.). 

Incremental Deployment and Throughput Maximization Routing for A Hybrid 

SDN. IEEE/ACM Transactions on Networking. 25(3), pp. 1861-1875. 

[104] Q. T. Minh, T. K. Dang, T. Nam, and T. Kitahara. (2019, May). Flow 

Aggregation for SDN-based Delay-insensitive Traffic Control in Mobile Core 

Networks. IET Communications. 13(8), pp. 1051-1060. 

[105] Cytron. (2019). Raspberry Pi 4 Model B. Available: https://my.cytron.io/p-

raspberry-pi-4-model-b-

4gb?gclid=EAIaIQobChMI4smA_7Lo5AIVkyQrCh3Xvw0dEAQYASABEg

IHI_D_BwE 

 

  



121 

 

APPENDIX A 

PROGRAM FOR CLIENT 

import sys,socket,select 

 

def client_pi(): 

 host = '169.254.249.122' 

 port = 9009 

 s = socket.socket(socket.AF_INET,socket.SOCK_STREAM) 

 

 try: 

  s.connect((host,port)) 

 except: 

  print 'Unable to connect' 

  sys.exit() 

 print 'Connected to the network\n' 

 while 1: 

  print 'Press: \n1) Router A\n2) Router B\n3) Router C\n' 

  x = input('Choose one destination: ') 

  if x == 1: 

   print 'Your destination is Router A.\n' 

   sys.stdout.write('[Me] ');sys.stdout.flush() 

   while 1: 

    socket_list = [sys.stdin,s] 

    read_sockets,write_sockets,error_sockets = 

select.select(socket_list,[],[]) 

    for sock in read_sockets: 

     if sock == s: 

      data = sock.recv(4096) 

      #print (data) 

      if not data: 

       print 'Disconnected from 

network.\n' 

      elif data[1:4] == '400': 

       msg = data[4:] 
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       sys.stdout.write('Received: 

'+msg+'\n');sys.stdout.flush() 

       sys.stdout.write('[Me] 

');sys.stdout.flush() 

      elif data[1:4] == '400': 

       msg = data[4:] 

                                                        sys.stdout.write('Received: '+msg+'\n');sys.stdout.flush() 

                                                        sys.stdout.write('[Me] ');sys.stdout.flush() 

                                                elif data[1:4] == '400': 

                                                        msg = data[4:] 

                                                        sys.stdout.write('Received: '+msg+'\n');sys.stdout.flush() 

                                                        sys.stdout.write('[Me] ');sys.stdout.flush() 

      else: 

       data = '0\n' 

       sys.stdout.flush() 

     else: 

      sys.stdout.write('[Me] '); sys.stdout.flush() 

      msg = sys.stdin.readline() 

      s.send(str(100) + msg) 

                if x == 2: 

                        print 'Your destination is Router B.\n' 

   print 'Which client do you want to receive the message?\n1) Wired 

client only\n2) Wireless client 1 only\n3) Wireless client 2 only\n4) Wireless client 3 

only\n5) Broadcast the message\n' 

   y = input('Your choice: ') 

                        if y == 1: 

                                print 'You wish to send to wired client.\n' 

                                sys.stdout.write('[Me] ');sys.stdout.flush()  

                                while 1: 

                                        socket_list = [sys.stdin,s] 

                                        read_sockets,write_sockets,error_sockets = 

select.select(socket_list,[],[]) 

                                        for sock in read_sockets:   

                                                if sock == s: 

                                                        data = sock.recv(4096) 

                                                        if not data: 
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                                                                print 'Disconnected from network.\n' 

                                                        elif data[1:4] == '400': 

                                                                if data[4:6] == '10': 

         msg = data[6:] 

                                                                 sys.stdout.write('Received message for service 1: 

'+msg+'\n') 

                                                                 sys.stdout.write('[Me] ');sys.stdout.flush() 

                                                                elif data[4:6] == '20': 

         msg = data[6:] 

                                                                 sys.stdout.write('Received message for service 2: 

'+msg+'\n') 

                                                                 sys.stdout.write('[Me] ');sys.stdout.flush() 

                                                                elif data[4:6] == '30': 

         msg = data[6:] 

                                                                 sys.stdout.write('Received message for service 3: 

'+msg+'\n') 

                                                                 sys.stdout.write('[Me] ');sys.stdout.flush() 

        else: 

         data = '0\n' 

         sys.stdout.flush() 

                                                        else: 

                                                                data = '0\n' 

                                                                sys.stdout.flush() 

 

                                                else: 

                                                        sys.stdout.write('[Me] '); sys.stdout.flush() 

                                                        msg = sys.stdin.readline() 

       print 'Mark your message as:\n1) 

Service 1\n2) Service 2\n3) Service 3\n' 

       z = input('Your choice: ') 

       if z == 1: 

                                                         s.send(str(21110) + msg) 

       elif z == 2: 

        s.send(str(21120) + msg) 

       elif z == 3: 

        s.send(str(21130) + msg) 
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                        elif y == 2: 

                                print 'You wish to send to wireless client 1.\n' 

                                sys.stdout.write('[Me] ');sys.stdout.flush()  

                                while 1: 

                                        socket_list = [sys.stdin,s] 

                                        read_sockets,write_sockets,error_sockets = 

select.select(socket_list,[],[]) 

                                        for sock in read_sockets:   

                                                if sock == s: 

                                                        data = sock.recv(4096) 

                                                        if not data: 

                                                                print 'Disconnected from network.\n' 

                                                        elif data[1:4] == '400': 

                                                                if data[4:6] == '10': 

         msg = data[6:] 

                                                                 sys.stdout.write('Received message from service 1: 

'+msg+'\n') 

                                                                 sys.stdout.write('[Me] ');sys.stdout.flush() 

                                                                elif data[4:6] == '20': 

         msg = data[6:] 

                                                                 sys.stdout.write('Received message from service 2: 

'+msg+'\n') 

                                                                 sys.stdout.write('[Me] ');sys.stdout.flush() 

                                                                elif data[4:6] == '30': 

         msg = data[6:] 

                                                                 sys.stdout.write('Received from service 3: 

'+msg+'\n') 

                                                                 sys.stdout.write('[Me] ');sys.stdout.flush() 

                                                                else: 

                                                                        data = '0\n' 

                                                                        sys.stdout.flush() 

                                                        else: 

                                                                data = '0\n' 

                                                                sys.stdout.flush() 

 

                                                else: 
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                                                        sys.stdout.write('[Me] '); sys.stdout.flush() 

                                                        msg = sys.stdin.readline() 

                                                        print 'Mark your message as:\n1) Service 1\n2) Service 

2\n3) Service 3\n' 

                                                        z = input('Your choice: ') 

                                                        if z == 1: 

                                                                s.send(str(22110) + msg) 

                                                        elif z == 2: 

                                                                s.send(str(22120) + msg) 

                                                        elif z == 3: 

                                                                s.send(str(22130) + msg) 

 

                        elif y == 3: 

                                print 'You wish to send to wireless client 2.\n' 

                                sys.stdout.write('[Me] ');sys.stdout.flush()  

                                while 1: 

                                        socket_list = [sys.stdin,s] 

                                        read_sockets,write_sockets,error_sockets = 

select.select(socket_list,[],[]) 

                                        for sock in read_sockets:   

                                                if sock == s: 

                                                        data = sock.recv(4096) 

                                                        if not data: 

                                                                print 'Disconnected from network.\n' 

                                                        elif data[1:4] == '400': 

                                                                if data[4:6] == '10': 

         msg = data[6:] 

                                                                 sys.stdout.write('Received message from service 1: 

'+msg+'\n') 

                                                                 sys.stdout.write('[Me] ');sys.stdout.flush() 

                                                                elif data[4:6] == '20': 

         msg = data[6:] 

                                                                 sys.stdout.write('Received message from service 2: 

'+msg+'\n') 

                                                                 sys.stdout.write('[Me] ');sys.stdout.flush() 

                                                                elif data[4:6] == '30': 
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         msg = data[6:] 

                                                                 sys.stdout.write('Received message from service 3: 

'+msg+'\n') 

                                                                 sys.stdout.write('[Me] ');sys.stdout.flush() 

                                                                else: 

                                                                        data = '0\n' 

                                                                        sys.stdout.flush() 

                                                        else: 

                                                                data = '0\n' 

                                                                sys.stdout.flush() 

 

                                                else: 

                                                        sys.stdout.write('[Me] '); sys.stdout.flush() 

                                                        msg = sys.stdin.readline() 

                                                        print 'Mark your message as:\n1) Service 1\n2) Service 

2\n3) Service 3\n' 

                                                        z = input('Your choice: ') 

                                                        if z == 1: 

                                                                s.send(str(23110) + msg) 

                                                        elif z == 2: 

                                                                s.send(str(23120) + msg) 

                                                        elif z == 3: 

                                                                s.send(str(23130) + msg) 

 

                        if y == 4: 

                                print 'You wish to send to wireless client 3.\n' 

                                sys.stdout.write('[Me] ');sys.stdout.flush()  

                                while 1: 

                                        socket_list = [sys.stdin,s] 

                                        read_sockets,write_sockets,error_sockets = 

select.select(socket_list,[],[]) 

                                        for sock in read_sockets:   

                                                if sock == s: 

                                                        data = sock.recv(4096) 

                                                        if not data: 

                                                                print 'Disconnected from network.\n' 
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                                                        elif data[1:4] == '400': 

                                                                if data[4:6] == '10': 

         msg = data[6:] 

                                                                 sys.stdout.write('Received from service 1: 

'+msg+'\n') 

                                                                 sys.stdout.write('[Me] ');sys.stdout.flush() 

                                                                elif data[4:6] == '20': 

         msg = data[6:] 

                                                                 sys.stdout.write('Received from service 2: 

'+msg+'\n') 

                                                                 sys.stdout.write('[Me] ');sys.stdout.flush() 

                                                                elif data[4:6] == '30': 

         msg = data[6:] 

                                                                 sys.stdout.write('Received from service 3: 

'+msg+'\n') 

                                                                 sys.stdout.write('[Me] ');sys.stdout.flush() 

                                                                else: 

                                                                        data = '0\n' 

                                                                        sys.stdout.flush() 

                                                        else: 

                                                                data = '0\n' 

                                                                sys.stdout.flush() 

 

                                                else: 

                                                        sys.stdout.write('[Me] '); sys.stdout.flush() 

                                                        msg = sys.stdin.readline() 

                                                        print 'Mark your message as:\n1) Service 1\n2) Service 

2\n3) Service 3\n' 

                                                        z = input('Your choice: ') 

                                                        if z == 1: 

                                                                s.send(str(24110) + msg) 

                                                        elif z == 2: 

                                                                s.send(str(24120) + msg) 

                                                        elif z == 3: 

                                                                s.send(str(24130) + msg) 
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   elif y == 5: 

    print 'You wish to broadcast the message.\n' 

    sys.stdout.write('[Me] ');sys.stdout.flush()  

                         while 1: 

                                 socket_list = [sys.stdin,s] 

                                 read_sockets,write_sockets,error_sockets = 

select.select(socket_list,[],[]) 

                                 for sock in read_sockets:   

                                         if sock == s: 

                                                 data = sock.recv(4096) 

                                                 if not data: 

                                                         print 'Disconnected from network.\n' 

                                                 elif data[1:4] == '400': 

                                                         msg = data[4:] 

                                                         sys.stdout.write('Received: '+msg+'\n') 

                                                         sys.stdout.write('[Me] ');sys.stdout.flush() 

                                                 elif data[0:3] == '400': 

                                                         msg = data[3:] 

                                                         sys.stdout.write('Received: '+msg+'\n') 

                                                         sys.stdout.write('[Me] ');sys.stdout.flush() 

                                                 elif data[2:5] == '400': 

                                                         msg = data[5:] 

                                                         sys.stdout.write('Received: '+msg+'\n') 

                                                         sys.stdout.write('[Me] ');sys.stdout.flush() 

                                                 else: 

                                                         data = '0\n' 

                                                         sys.stdout.flush() 

 

                                         else: 

                                                 sys.stdout.write('[Me] '); sys.stdout.flush() 

                                                 msg = sys.stdin.readline() 

                                                 s.send(str(200) + msg) 

                if x == 3: 

                        print 'Your destination is Router C.\n' 

   print 'Choose mode:\n1) FiWi\n2) FiWi-Fi\n' 

   a = input('Your mode: ') 
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   if a == 1: 

    print 'FiWi mode\n' 

    sys.stdout.write('[Me] ');sys.stdout.flush()  

                         while 1: 

                                 socket_list = [sys.stdin,s] 

                                 read_sockets,write_sockets,error_sockets = 

select.select(socket_list,[],[]) 

                                 for sock in read_sockets:   

                                         if sock == s: 

                                                 data = sock.recv(4096) 

                                                 if not data: 

                                                         print 'Disconnected from network.\n' 

                                                 elif data[1:4] == '400': 

                                                         msg = data[4:] 

                                                         sys.stdout.write('Received: '+msg+'\n') 

                                                         sys.stdout.write('[Me] ');sys.stdout.flush() 

                                                 elif data[1:4] == '400': 

                                                         msg = data[3:] 

                                                         sys.stdout.write('Received: '+msg+'\n') 

                                                         sys.stdout.write('[Me] ');sys.stdout.flush() 

                                                 elif data[2:5] == '400': 

                                                         msg = data[5:] 

                                                         sys.stdout.write('Received: '+msg+'\n') 

                                                         sys.stdout.write('[Me] ');sys.stdout.flush() 

                                                 else: 

                                                         data = '0\n' 

                                                         sys.stdout.flush() 

 

                                         else: 

                                                 sys.stdout.write('[Me] '); sys.stdout.flush() 

                                                 msg = sys.stdin.readline() 

                                                 s.send(str(300) + msg) 

                        if a == 2: 

    print 'FiWi-Fi mode\n' 

                                sys.stdout.write('[Me] ');sys.stdout.flush()  

                                while 1: 
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                                        socket_list = [sys.stdin,s] 

                                        read_sockets,write_sockets,error_sockets = 

select.select(socket_list,[],[]) 

                                        for sock in read_sockets:   

                                                if sock == s: 

                                                        data = sock.recv(4096) 

                                                        if not data: 

                                                                print 'Disconnected from network.\n' 

                                                        elif data[1:4] == '400': 

                                                                msg = data[4:] 

                                                                sys.stdout.write('Received: '+msg+'\n') 

                                                                sys.stdout.write('[Me] ');sys.stdout.flush() 

                                                        elif data[2:4] == '400': 

                                                                msg = data[3:] 

                                                                sys.stdout.write('Received: '+msg+'\n') 

                                                                sys.stdout.write('[Me] ');sys.stdout.flush() 

                                                        elif data[2:5] == '400': 

                                                                msg = data[5:] 

                                                                sys.stdout.write('Received: '+msg+'\n') 

                                                                sys.stdout.write('[Me] ');sys.stdout.flush() 

                                                        else: 

                                                                data = '0\n' 

                                                                sys.stdout.flush() 

 

                                                else: 

                                                        sys.stdout.write('[Me] '); sys.stdout.flush() 

                                                        msg = sys.stdin.readline() 

                                                        s.send(str(320) + msg) 

 

if __name__ == "__main__": 

 sys.exit(client_pi()) 
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APPENDIX B 

PROGRAM FOR HEADER PI 

import sys,socket,select 

 

def header_pi(): 

 host = '169.254.249.122' 

 port = 9009 

 s = socket.socket(socket.AF_INET,socket.SOCK_STREAM) 

 

 try: 

  s.connect((host,port)) 

 except: 

  print 'Unable to connect' 

  sys.exit() 

 print 'Connected to the network\n' 

 while 1: 

  socket_list = [sys.stdin,s] 

  read_sockets,write_sockets,error_sockets = select.select(socket_list,[],[]) 

  for sock in read_sockets: 

   if sock == s: 

    data = sock.recv(4096) 

    #print (data) 

    if not data: 

     print 'Disconnected from network.\n' 

    elif data[1:4] == '444': 

     msg = data[4:] 

     sock.send(str(400)+msg) 

    elif data[1:4] == '100': 

     msg = data[4:] 

                                                         sock.send(str(101)+msg) 

                                                 elif data[1:4] == '200': 

                                                         msg = data[4:] 

                                                        sock.send(str(202)+msg) 

    elif data[1:4] == ‘300’: 

     msg = data[4:] 
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     sock.send(str(303)+msg) 

    else: 

     data = '0\n' 

     sys.stdout.flush() 

if __name__ == "__main__": 

 sys.exit(header_pi()) 
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APPENDIX C 

PROGRAM FOR FORWARDING PI 

import sys,socket,select 

 

def forwarding_pi(): 

 host = '169.254.249.122' 

 port = 9009 

 s = socket.socket(socket.AF_INET,socket.SOCK_STREAM) 

 

 try: 

  s.connect((host,port)) 

 except: 

  print 'Unable to connect' 

  sys.exit() 

 print 'Connected to the network\n' 

 while 1: 

  socket_list = [sys.stdin,s] 

  read_sockets,write_sockets,error_sockets = select.select(socket_list,[],[]) 

  for sock in read_sockets: 

   if sock == s: 

    data = sock.recv(4096) 

    #print (data) 

    if not data: 

     print 'Disconnected from network.\n' 

    elif data[1:4] == '101': 

     msg = data[4:] 

     sock.send(str(111)+msg) 

    else: 

     data = ‘0’ 

     sys.stdout.flush() 

if __name__ == "__main__": 

 sys.exit(forwarding_pi()) 
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APPENDIX D 

PROPOSED ROUTER DATASHEET 

Key Features 

1. Reprogrammable and reconfigurable 

2. Scalable to Fi-WiFi and Wi-FiWi 

3. Low power consumption 

 

Connectivity 

1. Multiple Ethernet connections. 

2. Able to communicate wirelessly with other routers and devices. 

 

Performance 

1. Provides up to 700 kbps of throughput for FiWi transmissions at 100% load. 

2. Jitter for fiber, wireless and FiWi transmissions are less than 30 ms. 

 

Hardware specifications 

Total maximum power input 5 V/10 A 

RAM 1 GB Low Power Double Data Rate (LPDDR2) 

Router dimension (Height x 

width x depth) 

11 cm x 42 cm x 28 cm 

Operating system Raspbian 

Ethernet ports 6 ports 

Programming Python 

Protocols TCP/IP, IPv4 

Wireless characteristic 802.11b/g/n 

 

 

 


