
DEVELOPMENT OF PROGRAMMABLE FIBER-

WIRELESS EDUCATIONAL TESTBED

MUHAMMAD HAQEEM BIN MOHD NASIR

COLLEGE OF GRADUATE STUDIES

UNIVERSITI TENAGA NASIONAL

2020

DEVELOPMENT OF PROGRAMMABLE FIBER-WIRELESS

EDUCATIONAL TESTBED

MUHAMMAD HAQEEM BIN MOHD NASIR

A Thesis Submitted to the College of Graduate Studies, Universiti

Tenaga Nasional in Fulfilment of the Requirement for Degree of

Master of Electrical Engineering

FEBRUARY 2020

ii

DECLARATION

I hereby declare that the thesis is my original work except for quotations and citations

which have been duly acknowledged. I also declare that it has not been previously, and

is not concurrently submitted for any other degree at Universiti Tenaga Nasional or at

any other institutions. This thesis may be made available within the university library

and may be photocopied and loaned to other libraries for the purpose of consultation.

(Signature)

MUHAMMAD HAQEEM BIN MOHD NASIR

Date: 24 February 2020

iii

ABSTRACT

Fiber-Wireless (FiWi) network is an integration of fiber optic and wireless connections

in the same network. FiWi is needed due to rapid increment of Internet users and

bandwidth-hungry services. Therefore, a lot of solutions have been proposed and

created by researchers using embedded system-based hardware and off-the-shelves

routers in order to study FiWi technology. However, off-the-shelves routers have a

limitation on its ability to be reconfigurable and scalable to a certain extent. Hence,

this thesis proposes the development and performance evaluation of a

reprogrammable, fast configurable, scalable and flexible FiWi router testbed. The

testbed is using embedded system-based hardware that can be used for lab-scale

experiments for research and educational purposes. Raspberry Pi is used as the

embedded system hardware to develop the router since it is reconfigurable, space

friendly, cost-efficient and user friendly. Each router comprises of four Raspberry Pis;

one Header Pi and three Forwarding Pis, which are connected via two Ethernet

switches. For wireless router, an additional access point is used as the antennae of the

router. The performance of the testbed in terms of throughput, end-to-end delay, and

jitter for upstream and downstream are done in wireless network, fiber network and

FiWi network. The performance of the proposed testbed is scaled up with off-the-shelf

router and industrial grade routers in terms of throughput for each network where the

throughput shows similar increasing trend proving that the testbed is working

correctly. The end-to-end delay of the testbed behaves expectedly as the data size

increases and comply with IEEE 802.15.4 routing scheme trend. Whereas the jitter

complies the Cisco’s standard which is under 30 ms. The maximum jitter in FiWi is

8.25 ms. A stress test on the testbed is conducted by sending two traffics of data

simultaneously. The result shows that the end-to-end delay for two traffics is twice as

much as single traffic as expected since router needs to process the data twice the

amount of data. The maximum jitter of the proposed router for two traffics is 11.23 ms

which is still under 30 ms. The scalability test is done for Wireless-Fiber-Wireless (Wi-

FiWi) network and Fiber-Wireless-Fiber (Fi-WiFi) network. The results prove that the

proposed testbed is suitable to be a reprogrammable, fast reconfigurable, scalable and

flexible FiWi router testbed for research and educational purposes.

iv

ACKNOWLEDGEMENT

I am humbly grateful for the love and support from my supervisor and co-supervisor,

Ir. Dr. Nurul Asyikin binti Mohamed Radzi and Dr. Fairuz Abdullah for their guidance

and teachings as well as their tireless dedication, motivations and enthusiasm on

showing me the right path throughout my studies. Also, special thank you to Prof. Ir.

Dr. Md Zaini bin Jamaludin, Dr. Wan Siti Halimatul Munirah binti Wan Ahmad, Mr.

Aiman bin Ismail, Mr. Mohammad Azmi Ridwan, Nurshazlina Suhaimy, Faris Syahmi

bin Samidi, and Nayli Adriana for their advices and knowledge that have been shared

with me. Secondly, I would like to express my gratitude to Dr. Normy Norfiza, Mrs.

Roslina Abdul Ghapar and Mrs. Husni for their constant morale support. Lastly, I want

to express my eternal love and gratitude to my parents; Normah binti Hj Hambali and

Mohd Nasir bin A. Wahab for their prayers and wisdom. Without them, I will never

achieve what I have accomplished today.

v

TABLE OF CONTENT

Page

DECLARATION ii

ABSTRACT iii

ACKNOWLEDGEMENT iv

TABLE OF CONTENTS v

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS xii

LIST OF ABBREVIATIONS xiii

LIST OF PUBLICATIONS xvii

CHAPTER 1 INTRODUCTION 1

1.1 Background 1

1.1.1 Fiber-Wireless in General 2

1.1.2 FiWi Testbed 3

1.2 Problem Statements 4

1.3 Research Objectives 5

1.4 Scope of Work 5

1.5 Thesis Outline 7

CHAPTER 2 LITERATURE REVIEW 9

2.1 Introduction 9

2.2 FiWi Network 9

2.3 Testbed Architecture 13

2.3.1 Fiber 14

2.3.2 Wireless 17

vi

2.3.3 Fiber-Wireless 19

2.4 Router Testbed 30

2.4.1 Software-based Router 30

2.4.2 Commercial-based Router 34

2.4.3 Embedded System-based Router 37

2.5 Summary 55

CHAPTER 3 RESEARCH METHODOLOGY 58

3.1 Introduction 58

3.2 Proposed Fiber-Wireless Testbed 61

3.2.1 Router Architecture 61

3.2.2 Traffic Modelling 62

3.2.3 Default System Parameter 64

3.3 Raspberry Pi-based Fiber-Wireless Testbed 64

3.3.1 Hardware Setup 64

3.3.2 Raspberry Pi Router Connections 67

3.3.3 Optical Fiber 68

3.3.4 Fiber Media Converter 69

3.3.5 Ethernet Switch 69

3.4 Raspberry Pi Fiber-Wireless Testbed Programming Environment 70

3.4.1 Transmit and Receive Flowchart 70

3.4.2 Testbed Scalability 70

3.4.3 Raspberry Pi Fiber-Wireless Testbed as an Educational Module 73

3.5 Testbed Parameters 74

3.5.1 Design Parameters 74

3.5.2 Performance Parameters 75

3.6 Summary 76

vii

CHAPTER 4 RESULTS AND PERFORMANCE EVALUATION 77

4.1 Introduction 77

4.2 Wireless Transmission Performance Test 77

4.2.1 Throughput 78

4.2.2 End-to-end delay 80

4.2.3 Jitter 81

4.3 Fiber Transmission Performance Test 83

4.3.1 Throughput 83

4.3.2 End-to-end delay 85

4.3.3 Jitter 86

4.4 Fiber-Wireless Transmission Performance Test 87

4.4.1 Throughput 88

4.4.2 End-to-end delay 89

4.4.3 Jitter 90

4.5 Fiber-Wireless Stress Test 92

4.5.1 Throughput 92

4.5.2 End-to-end delay 93

4.5.3 Jitter 95

4.6 Scalability Performance Test 96

4.6.1 Fiber-Wireless-Fiber Performance Test 97

4.6.2 Wireless-Fiber-Wireless Performance Test 98

4.6.3 Fi-WiFi and Wi-FiWi Performance Comparison 100

4.7 Summary 102

CHAPTER 5 CONCLUSION AND FUTURE WORK 104

5.1 Conclusion 104

5.2 Future Work and Recommendations 108

viii

REFERENCES 109

APPENDIX A PROGRAM FOR CLIENT 121

APPENDIX B PROGRAM FOR HEADER PI 131

APPENDIX C PROGRAM FOR FORWARDING PI 133

APPENDIX D PROPOSED ROUTER DATASHEET 134

ix

LIST OF TABLES

Table 2.1 Testbed architecture summary 22

Table 2.2 Router testbed summary 41

Table 2.3 Overall summary of testbed architecture in FiWi 56

Table 2.4 Overall summary of router testbed 57

Table 3.1 Summary of default system parameter 64

Table 3.2 Summary of labels for FiWi, Fi-WiFi and Wi-FiWi 73

Table 3.3 Design parameters 75

Table 3.4 Performance parameters 75

Table 5.1 Results summary 107

x

LIST OF FIGURES

Figure 1 FiWi typical architecture 2

Figure 1.1 Scope of study 7

Figure 3.1 Research flow 59

Figure 3.2 Research flowchart 60

Figure 3.3 Basic router architecture 61

Figure 3.4 Basic fiber-wireless router architecture 62

Figure 3.5 Data flow in a router 63

Figure 3.6 FiWi testbed block diagram 65

Figure 3.7 FiWi testbed architecture 65

Figure 3.8 Fi-WiFi setup 66

Figure 3.9 Wi-FiWi setup 66

Figure 3.10 Raspberry Pi router connection 67

Figure 3.11 Raspberry Pi fiber-wireless router connection 68

Figure 3.12 SC/APC to SC/APC fiber optic 68

Figure 3.13 Fiber Media Converter 69

Figure 3.14 Ethernet switch 69

Figure 3.15 Client flowchart 70

Figure 3.16 Header Pi flowchart 71

Figure 3.17 Forwarding Pi A flowchart 71

Figure 4.1 Downstream throughput 79

Figure 4.2 Upstream throughput 80

Figure 4.3 End-to-end delay for wireless transmission 81

Figure 4.4 Proposed router downstream jitter 82

Figure 4.5 Proposed router upstream jitter 83

Figure 4.6 Downstream throughput 84

Figure 4.7 Upstream throughput 85

Figure 4.8 End-to-end delay for fiber transmission 86

Figure 4.9 Downstream jitter 87

Figure 4.10 Upstream jitter 87

Figure 4.11 Downstream throughput 89

xi

Figure 4.12 Upstream throughput 89

Figure 4.13 End-to-end delay for FiWi transmission 90

Figure 4.14 Downstream jitter 91

Figure 4.15 Upstream jitter 92

Figure 4.16 Downstream throughput 93

Figure 4.17 Upstream throughput 93

Figure 4.18 Downstream end-to-end delay 94

Figure 4.19 Upstream end-to-end delay 95

Figure 4.20 Downstream jitter 96

Figure 4.21 Upstream jitter 96

Figure 4.22 Fi-WiFi downstream throughput 97

Figure 4.23 Fi-WiFi end-to-end delay 98

Figure 4.24 Wi-FiWi throughput 99

Figure 4.25 Wi-FiWi end-to-end delay 100

Figure 4.26 Fi-WiFi vs Wi-FiWi downstream throughput 100

Figure 4.27 Fi-WiFi vs Wi-FiWi upstream throughput 101

Figure 4.28 Fi-WiFi vs Wi-FiWi downstream end-to-end delay 101

Figure 4.29 Fi-WiFi vs Wi-FiWi upstream end-to-end delay 102

xii

LIST OF SYMBOLS

Di,j Time of transmission

Dave Average transmission time

Np Total number of receiving packets

xiii

LIST OF ABBREVIATIONS

3GPP Third Generation Partnership Project

4G Fourth Generation

AID Action Identifier

AP Access Point

AWG Arbitrary Waveform Generator

BATMAN Better Approach To Mobile Ad-hoc Networking

BBU Baseband Unit

CCN Content Centric Network

CDMA Code Division Multiple Access

CID Connection Identifier

CO Central Office

CSA Client System Agent

CSMA/CA Carrier Sense Multiple Access/Collision Avoidance

D2D Device-to-Device

DCF Distributed Coordination Function

DFB Distributed Feedback

DPDK Data Plane Development Kit

DRAGON Dynamic Resource Allocation via GMPLS Optical

Network

DS Distribution System

E/O Electrical-to-Optical

EN Emulation Network

FBMC Filter-Bank Multicarrier

FDD Frequency Division Duplex

FiWi Fiber-Wireless

Fi-WiFi Fiber-Wireless-Fiber

FM Frequency Modulation

FMC Fiber Media Converter

FPGA Field-Programmable Gate Array

FSAN Full Service Access Network

xiv

FSK Frequency Shift Keying

GE-PON Gigabit Ethernet PON

GMPLS Generalized Multiprotocol Label Switching

GOOSE Generic Object-Oriented Substation Event

G-PON Gigabit-capable PON

GR Guarantee Rate

GSM Global System Mobile communication

HQoS Hierarchical QoS

HWMN Hybrid Wireless Mesh Network

IEEE Institute of Electrical and Electronic Engineers

IoT Internet of Things

IPv6 IP version 6

ITU International Telecommunication Union

ITU-T ITU – Telecommunication Standardization Sector

L2 Layer 2

L3 Layer 3

LCD Liquid Crystal Display

LF-DLSTM Local Feature-based Deep Long Short Term

LOS Line of Sight

LSP Label Switched Path

LTE Long Term Evolution

M2M Machine-to-Machine

MAC Medium Access Control

MANET Mobile Ad-hoc Network

MFH Mobile Frouhaul

MIMO Multiple Input Multiple Output

MN Management Network

MNO Mobile Network Operator

MOFI Mobile-Oriented Future Internet

MOR Multichannel Opportunistic Routing

NDN Named Data Network

NFD NDN Forwarding Daemon

NG-PON Next Generation PON

xv

NS2 Network Simulator 2

NS3 Network Simulator 3

O/E Optical-to-Electrical

OFDM PON Orthogonal Frequency Division Multiplexing PON

OLSR Optimized Link State Routing

OLT Optical Line Terminal

ONU Optical Network Unit

OVS OpenvSwitch

P2MP Point-to-Multipoint

ParaDiMe Parallel Router Distributed Memory

PCE Path Computation Element

PDV Packet Delay Variation

PHY Physical

PMT Photomultiplier Tube

P-OLT Programmable OLT

PON Passive Optical Network

P-ONU Programmable ONU

QoS Quality of Service

R&F Radio-and-Fiber

RAN Radio Access Network

RAN Remote Antenna Unit

RAT Regulated Action Table

RF Radio Frequency

ROADM Reconfigurable Optical Add-Drop Multiplexer

RoF Radio-over-Fiber

RTDS Real Time Digital Simulator

SC/APC Single Core/Angled Physical Contact

SDM Spatial Division Multiplexing

SDN Software Defined Network

SDOAN Software Defined Optical Access Network

SMF Single-Mode Fiber

SR Segment Routing

TDD Time Division Duplex

xvi

TDM-PON Time Division Multiplexing PON

UE User Equipment

UHD Ultra High Definition

UMTS Universal Mobile Telecommunications System

URLLC Ultra-Reliable Low Latency Communications

USRP Universal Software Radio Peripheral

VDS Video Distribution System

VLSR Virtual Label Switched Router

VoIP Voice over IP

VR Virtual Reality

VTR Verilog-to-Routing

WASN Wireless Ad-hoc Sensor Network

WCDMA/HSPA Wide-band Code Division Multiple Access/High-

Speed Packet Access

WDM Wavelength Division Multiplexing

WDM-PON Wavelength Division Multiplexed PON

Wi-FiWi Wireless-Fiber-Wireless

WiMAX World Interoperability for Microwave Access

WLAN Wireless Local Area Network

WMAN-SC Wireless Metropolitan Area Network – Single Carrier

WMAN-OFDM WMAN-Orthogonal Frequency Division

Multiplexing

WMAN-OFDMA WMAN-Orthogonal Frequency Division

Multiplexing Access

WMAN-SCA WMAN - Single Carrier Access

WMN Wireless Mesh Network

WRON Wavelength-Routed Optical Network

xvii

LIST OF PUBLICATIONS

The following list shows the publication done by author up to date of thesis.

1. M. H. M. Nasir, N. A. M. Radzi, W. S. H. M. W. Ahmad, F. Abdullah, M. Z.

Jamaludin (2019, Sept.). Comparison of Router Testbeds: Embedded system-

based, Software-based, and Multiprotocol Label Switching (MPLS).

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS).

15(3), pp. 1250-1256.

2. F. S. Samidi, M. H. M. Nasir, N. A. M. Radzi, F. Abdullah, A. Ismail, M. Z.

Jamaludin, Y. E. Erana, W. S. H. M. W. Ahmad. Performance Evaluation of

Wireless Router Testbed using Raspberry Pi. International Journal of Recent

Technology and Engineering (IJRTE). 8(4), pp. 6415-6421.

3. M. H. M. Nasir, W. S. H. M. W. Ahmad, N. A. M. Radzi. Raspberry Pi as

Reconfigurable Fiber-based Router and Its Performance Analysis. Accepted

for presentation in International Conference on Photonics 2020 (ICP2020).

1

CHAPTER 1

INTRODUCTION

1.1 Background

Over the years, Internet has becoming more advanced each day. Most people uses

Internet to communicate with friends and family, for online banking, video streaming

and online gaming. Some uses an advanced Internet applications such as Virtual

Reality (VR) for online gaming. For better or worse, the Internet has completely

changed the way of life for humankind.

Having such advanced technologies cause high demands of more reliable and faster

Internet because the services in these technologies are classified as bandwidth-

intensive. According to Yu et al. [1], the exponential growth of mobile devices and

bandwidth-intensive services with demanding Quality of Service (QoS) have increased

the interest of fiber-wireless (FiWi) network deployment to provide high capacity, high

flexibility and low cost broadband access. Hence, the needs of FiWi network to

provide greater bandwidth allocation and mobility to the end users are necessary.

According to Edholm’s Law of Bandwidth [2], FiWi network is an integration of

optical fiber and wireless to provide fixed and mobile services. One of the most basic

architecture of FiWi is using Passive Optical Network (PON). It uses passive

components that do not require any power which reduces operation and maintenance

cost.

This thesis develops a scalable and fast integration testbed for FiWi that can be used

in lab-scale experiments for research purposes and as an educational module. The

testbed uses Raspberry Pi because it can be programmed by using Python to create a

router. The key feature of Python for this project is its socket module which enables

the Raspberry Pi to reliably communicate with one another via Transmission Control

Protocol/Internet Protocol (TCP/IP). Furthermore, compared to other languages, the

simplicity of Python makes the reconfiguration of the proposed router fast and flexible.

Hence, making the proposed router scalable and fast integration. Each router in the

2

Figure 1 FiWi typical architecture

testbed consists of four Raspberry Pi 3B+ and two Ethernet switches via CAT5e

Ethernet cable. Detail explanations about the testbed will be done in Chapter 3.

1.1.1 Fiber Wireless Network

FiWi is an integration of fiber optic and wireless in a network [2-6]. According to Yu

et al. [1], a typical FiWi has a high-capacity PON that comprises of an Optical Line

Terminal (OLT) and multiple Optical Network Units (ONU) connected to a cluster of

wireless routers. In return, ONU is integrated with a wireless gateway that provides

wide-area connectivity to users.

The typical architecture of FiWi is shown in Figure 1. FiWi consists of two major parts

in the network; optical backhaul and wireless front end. At the optical backhaul, the

OLT at the central office (CO) forms a root connected to the optical backbone via a

fiber link. This is to provide cloud computing services. ONU is connected to the OLT

via 1 : N (1 : 32 or 1 : 64) splitter to form a leaf-shaped nodes. The CO is responsible

to manage the information transmission between mobile devices with ONUs and

acting as a gateway to other networks [7]. In the wireless end of FiWi network, mobile

devices such as smart phones [8, 9], VR glasses [10], smart watches [11] and other

Internet of Things (IoT) devices [10-12] have access to the Internet either via ONU or

multi-hop wireless mesh network.

OLT

ONU

ONU

1:N

splitter

Gateway

Wireless

router

Mobile

device

s

3

Based on a study by Chein and Reisslein [13], one of the advantages of FiWi is that it

provides high speed optical backhaul for a wireless mesh network. Rimal et al. [14]

added that the network has a broadband access where it uses wide range of frequencies

enabling a large number of data to communicate simultaneously. Whereas, mobile

backhaul combines reliability and capacity of Ethernet-based optical backhaul with the

wide range of coverage and flexibility of Ethernet-based wireless devices. By utilizing

the efficacy of both optical fiber and wireless, a fast speed and low cost of service

areas can be achieved [15].

Other advantage of having FiWi technology is the combination of fiber optic and radio

access technologies in multi-tier Radio Access Network (RAN) [16]. Radio access

technologies will be used to deliver wireless services with high capacity, high link

speed, and low latency [17]. The multi-tier RAN will improve the cell edge

performance for mobile fronthaul and backhaul, resource sharing, and centralization

of multiple standards with different frequency bands and modulation formats.

It can be concluded that FiWi is a promising technology to support high demand of

bandwidth and large number of users in different types of topologies and geographical

environments.

1.1.2 FiWi Testbed

Over the years, research communities have been working hard to improve current

technologies. Hence, in order to study and perform extensive performance evaluations,

testbeds are needed. Testbed is known as a prototype for proof-of-concept of a

technology features where further experiments can be applied [18]. There are various

types of testbed in various platforms such as lab-scale testbed and field testbed.

Numerous benefits of having a testbed are explained by Hurst et al. [19] Built in lab-

scale environment is portable. Which means, it can be easily packed away, securely

stored and safely transported. The testbed can be also reused and assembled by other

researchers in the future.

4

Furthermore, according to a study by Gong et al. [20], a testbed can have flexible

architecture which can be connected to any devices such as multiple sensors. Despite

of its compactness, it has powerful local computation unit. A testbed can also be

reconfigured to different topologies.

It can be deduced that, developing a lab-scale testbed is a promising and practical way

of studying and experimenting a particular technology especially in FiWi for research

and educational purposes before an actual implementation due to its simplicity,

portability and flexibility.

1.2 Problem Statements

According to [16], the demand for Internet and leased line bandwidth are growing

continuously at more than 20% per year due to more video streaming, cloud

computing, social media and mobile data delivery. By 2020, the bandwidth demand

will continue to grow due to an enhancement of video quality such as 8K Ultra High

Definition (UHD) and increasing number of user subscriptions. Because of that, the

estimated traffic in terms of mobile data and fixed systems will be 2600 times more

than the traffic in 2010 [16]. Furthermore, this growth is accelerated by new type of

communication services such as device-to-device (D2D) and machine-to-machine

(M2M). Therefore, in order to ensure the users to experience the same QoS at anytime

and anywhere while the demand is increasing, FiWi deployment has become a

necessity because it can cover a large area and support large number of users.

According to Ridwan et al. [21], FiWi is still an ongoing study and there are plenty of

rooms for improvement. Therefore, a development of fast integration and scalable

testbed is crucial to provide a platform to investigate further in order to understand

fundamental knowledge especially for undergraduate university students, graduate

engineers and researchers. Some of the existing testbeds consist of complicated setup

and require a big area to install. For example, Abraha et al. [22] conducted an

experiment consist of 64 antennas for FiWi testbed setup. This makes the testbed

impractical to be an educational module because the installation of the antennas

involves a whole building. Hence, fast integration is an important criterion for a testbed

5

to be an educational module so that the installation of the testbed is easy and the

lecturers can have more time on explaining rather than focusing on testbed installation.

Therefore, the proposed testbed is able to help students on understanding the hands-on

knowledge of FiWi, reprogrammability of the router and medium conversions in FiWi

in a lab-scale area.

1.3 Research Objectives

The aim of this thesis is to design and evaluate the performance of a fast integration

scalable FiWi testbed. The simplicity of the testbed in terms of development and setup

makes it practical to be an educational module in FiWi network by using Raspberry Pi

3B+.

The specific objectives of this thesis are as follows:

1. Development of a reprogrammable and fast reconfigurable lab-scale FiWi

testbed that supports the integration of fiber optic and wireless for research

and educational purposes.

2. Evaluate performance of proposed FiWi testbed in terms of scalability of

more than one traffics and flexibility to a different topology; such as Fiber-

Wireless-Fiber (Fi-WiFi) and Wireless-Fiber-Wireless (Wi-FiWi).

1.4 Scope of Work

The scope of work for this thesis is shown in Figure 1.1. The system is focused on

FiWi network because it is being used in the current global networking technology.

Embedded system-based is chosen over software-based and industrial-based is due to

its fast integration, scalability and suitability as an educational module especially for

beginners. The chosen embedded system is Raspberry Pi 3B+ over Arduino and

Banana Pi R1 because it is user friendly with low power consumption and fast

implementation. Arduino is not chosen because it is not suitable to be used as a testbed

for data communication field and it does not have enough processing power to handle

the routing processes. Meanwhile, Banana Pi R1 is not chosen because the way it

works is just by using “OpenWrt” command to start the routing process making the

6

users unable to create their own routing mechanism for research and educational

purposes. Raspberry Pi 3B+ however, uses Python language making it more feasible

because it has socket module, therefore, the routing mechanism can be built from

scratch.

In order to achieve the objectives of this thesis, a FiWi testbed is designed and

developed by using Raspberry Pi 3B+ instead of depending on theories, analytical

calculations or a simulation. This is because the results obtained by the testbed are

more accurate as it includes non-linear factors such as noise and heat loss in copper.

However, the testbed is used in the lab-scale environment with short distance

transmissions. Hence, the noise and heat loss are negligible. The fiber optics used in

this project are mainly for data transmissions. While the results obtained theoretically,

analytically and simulations come with many assumptions.

The performance of the testbed is evaluated for upstream and downstream

communication in terms of throughput, delay and jitter. These performance parameters

are affected by different data size which is the design parameter. The throughput of

the testbed is then scaled and validated with industrial grade routers. The performance

parameters are then re-evaluated for stress test and scalability test. During stress test,

two traffics of data are sent simultaneously. Whereas, the scalability test is to test the

performance of the testbed in other topologies which are fiber-wireless-fiber (Fi-WiFi)

network and wireless-fiber-wireless (Wi-FiWi) network.

7

1.5 Thesis Outline

This thesis comprises of five chapters:

Chapter 1 begins by stating the current problem faced by the Internet. Then, the basic

informations and advantages of FiWi network and testbed are presented in this chapter.

The problem statements are discussed, and the objectives are outlined. Finally, Chapter

1 ends by explaining the scope of work to achieve project objectives.

Chapter 2 will begin by explaining in detail about the existing testbed architecture done

by other researchers. Then, the routing media in terms of fiber, wireless and fiber-

wireless that have been used in real life will be reviewed. The core subtopic in this

chapter is FiWi. Hence, in-depth study on the theory of FiWi will be discussed in this

chapter. Next, a review on the advantages and disadvantages of the existing router

S
co

p
e

M
et

h
o

d
o

lo
g

y

R
es

u
lt

s

System

Sub Issue 1

Application

based

Sub Issue 2

Type based

Elements

Performance

parameters

Design

parameter
Data size Delay Data size Delay

FiWi

Embedded system-based Software-based Industrial-based

Arduino Raspberry Pi 3B+ Banana Pi R1

Testbed Theory Analytical Simulation

Validation Performance test Stress test Scalability test

Delay Throughput Jitter

Data size

Delay Throughput

Figure 1.1 Scope of study

8

testbeds which are software-based router, commercial-based router and embedded

system-based router will be discussed in this chapter. This chapter ends by

summarizing the literature review.

Chapter 3 will explain about the methodology of this project. Firstly, this chapter will

explain about the proposed testbed architecture. The explanation includes router

architecture, network environment which is the topology and the default system

parameter. Then, the hardware setup and each of the components will be explained in

details. The explanation about programming environment for the testbed will include

the algorithm of the testbed, testbed scalability and how the testbed can be an

educational module. This chapter also explains on the testbed parameters. Finally, will

be ended by summarizing the whole chapter.

Chapter 4 will explain about the results and performance evaluation of the testbed for

wireless transmission, fiber transmission and FiWi transmission. Firstly, the results in

terms of throughput will be validated for each type of the transmission. Then, the

explanation continues with the presentation of delay, throughput and jitter for each

type of transmission. The performance for the stress test and scalability test will also

be included. This chapter will be ended with the summary on the performance of the

testbed.

Finally, Chapter 5 will present the conclusion and future work for this thesis. This

chapter will be concluding the whole project and will describe on advantages and

disadvantages of the testbed. The challenges and limitations while doing this project

will be addressed in this chapter as well as the recommendations for future work to

improvise the testbed.

9

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

A general information of FiWi has been briefly discussed in Chapter 1. According to

Tornatore et al. [16], FiWi network architecture changes the future of Internet

networking structure due to its capability to feed the bandwidth-hungry demand as

well as the mobility and flexibility offered by wireless. This chapter explains in detail

about FiWi network. However, FiWi still has a lot of rooms for improvements for

future communication technologies. Therefore, numerous studies in various testbed

architectures such as fiber, wireless, and FiWi have been studied thoroughly by many

researchers. This chapter focuses on literature review of previous router testbeds such

as software-based router, commercial-based router and embedded system-based

router.

This chapter begins with a detail explanation of FiWi network in Section 2.2. Section

2.3 discusses on testbed architectures, such as fiber, wireless and FiWi. Then, Section

2.4 discuses on types of router testbeds, such as software-based router, commercial-

based router and embedded system-based router. Finally, Section 2.5 summarizes this

chapter.

2.2 FiWi Network

According to Martin Maier and Navid Ghazisaidi, FiWi network is a combination of

fiber and wireless in the same network [23, 24]. FiWi provides cost effectiveness,

robustness, flexibility, high capacity, reliability and self-organization [25-27]. A

typical FiWi network consists of PON which comprises of OLT and ONU that are

connected to wireless routers as shown in Figure 2.1.

In order to provide new high-speed services, PON has become one of the solutions to

overcome bandwidth limitation of the last mile bottleneck access technologies as well

10

as increasing demand of high-spectrum bandwidth [28]. Currently, Time Division

Multiplexing-based PON (TDM-PON) such as Gigabit Ethernet PON (GE-PON) and

Gigabit-capable PON (G-PON) are widely used in different countries [28, 29]. Until

today, the demand for high bandwidth is increasing rapidly due to advanced

multimedia applications such as online gaming and video-on-demand. Hence,

telecommunication groups such as Full Service Access Network (FSAN), Institute of

Electrical and Electronic Engineers (IEEE) and International Telecommunication

Union (ITU) have proposed Next Generation PON (NG-PON). NG-PON has two

stages; NG-PON1 and NG-PON2. NG-PON1 is known as the midterm next generation

which provides 10 Gbps for upstream and downstream. Whereas, NG-PON2 is a long-

term next generation which provides not less than 40 Gbps [28, 30-32]. Moreover,

according to [28], recent studies have been carried out on NG-PON2 enabling

technologies such as 40 G TDM-PON and Wavelength Division Multiplexed PON

(WDM-PON), Time and Wavelength Division Multiplexed PON (TWDM-PON) and

Orthogonal Frequency Division Multiplexing PON (OFDM-PON). Amongst all these

technologies, TWDM-PON has been selected as the best choice for NG-PON2 due to

its capability to support backward compatibility, flexibility and static sharing [28, 33].

By 2020, NG-PON2 is expected to provide 128 Gbps to 500 Gbps of bandwidth,

supports from 256 to 1024 ONUs, 20 km to 40 km extended passive reach option for

the working path, low energy consumption, low capital and operational expenditures

and coexistence with G-PON.

PON is a Point-to-Multipoint (P2MP) optical fiber network with no active elements in

the signal’s path which connects OLT with ONUs via 1: N optical splitters. PON

typically uses tree topology to maximize the coverage, allow flexibility, and minimize

the number of network splitting. Hence, it reduces the optical power loss and increases

optical reach [28]. Moreover, the deployment of PON technology in access network

provides end-to-end transparency, less processing and is not affected by electrical

noises [28].

At the wireless side of FiWi network, it provides broadband services for not only

mobile users but also fixed subscribers. Wireless technology in FiWi is necessary due

to various limitations such as geographical constraints, economical balance, provider’s

11

strategy, and damage situation in case of disasters that cause optical fiber to not be

able to be deployed [34]. According to Van et al. [35], many studies on FiWi

architectural have been done and the most widely considered FiWi network

architecture is based on PON and wireless networking technologies such as Wireless

Local Area Network (WLAN), World Interoperability for Microwave Access

(WiMAX), Long Term Evolution (LTE), and Wireless Mesh Network (WMN).

According to Maier and Ghazisaidi [23], WLANs based on IEEE 802.11 have become

very popular in providing different data services. In general WLAN architecture, an

Access Point (AP) is connected to the internet or other WLANs through a distribution

system (DS). In this architecture, wireless clients communicate with their associated

AP using the medium access control (MAC) protocols defined in the IEEE 802.11

specifications [36-38]. The IEEE 802.11 MAC layer deploys the distributed

coordination function (DCF) as a default access technique. In this contention-based

scheme, wireless clients associated with the AP use their air interfaces for sensing the

channel availability. If the channel is idle, the source sends its data to destination

through the associated AP. If more than one wireless client tries to access the channel

simultaneously, a collision occurs. Hence, carrier sense multiple access/collision

avoidance (CSMA/CA) access protocol is introduced in this technology to avoid

collisions.

The initial IEEE 802.16 WiMAX standard was established in the frequency band from

10 GHz to 66 GHz providing up to 75 Mbps line-of-sight (LOS) connections for both

point-to-multipoint and mesh nodes [23]. The WiMAX physical (PHY) layer supports

four different modulation schemes; wireless metropolitan area network-single carrier

(WMAN-SC), WMAN-single carrier access (WMAN-SCA), WMAN-orthogonal

frequency division multiplexing (WMAN-OFDM) and WMAN-orthogonal frequency

division multiple access (WMAN-OFDMA). WMAN-SC is designed for the

frequency band from 10 GHz to 66 GHz, whereas other modulation schemes are used

for the frequency band from 2 GHz to 11 GHz. Additionally, WiMAX PHY layer can

transfer data bidirectionally by using time division duplex (TDD) or frequency

division duplex (FDD). Meanwhile, WiMAX MAC layer is responsible for assigning

12

connection identifiers (CIDs) as well as allocating bandwidth to subscriber stations

[23].

LTE has been defined by the third generation partnership project (3GPP) as fourth

generation (4G) cellular network technology for high-speed wireless end users [38-

40]. The first amendment of LTE provides a transmission rate of 300 Mbps and

operates in both TDD and FDD modes [38]. LTE operators are given the flexibility to

define the size of bandwidth, ranging from below 5 MHz to 20 MHz [23]. LTE aims at

providing a smooth evolution from 3GPP to 3GPP2 cellular networks such as wide-

band code division multiple access/high-speed packet access (WCDMA/HSPA) and

code division multiple access (CDMA). Typically, OFDM is used in the downlink

radio transmission of LTE networks. Moreover, LTE supports advanced multi-antenna

schemes such as multiple input multiple output (MIMO) antennas, transmit diversity,

spatial multiplexing and beamforming.

WMN has been envisioned to enhance flexibility, increases reliability, and improve

the performance of wireless networks [41, 42]. There are two main approaches in the

design of wireless networks; infrastructure networks and infrastructure-less networks

[23]. In infrastructure networks, the wireless clients rely on an underlying

infrastructure for communication via a central control point such as AP. Global system

for mobile communications (GSM) and universal mobile telecommunications system

(UMTS) are the typical examples for infrastructure wireless networks. On the other

hand, in infrastructure-less networks, wireless clients communicate with one another

directly. It is also known as mobile ad-hoc networks (MANETs) which enable wireless

clients to act as routers [23]. The convergence of these two approaches leads to WMN.

WMNs employ multihop communications to forward traffic to and from wired DS.

WMNs are expected to be widely deployed due to their ability to provide ubiquity,

convenience, cost-efficiency, and simplicity [23, 41, 42].

These wireless networking technologies can be implemented by using Radio-over-

Fiber (RoF) [43]. According to Rajpal and Goyal [34], RoF is potential to be the

backbone of the wireless access network and it has gained significant momentum in

the last decade as the last-mile access scheme. RoF is an analog optical link to transport

13

data over optical fiber by transmitting modulated radio frequency (RF) signals to and

from CO to base station or Remote Antenna Unit (RAU) [44-46]. This modulation can

be done directly with the radio signal or at an intermediate frequency. In other words,

RoF transport information over optical fiber by modulating light pulses with the radio

signals [34]. RoF serves as a high-speed WLAN. The frequencies of RoF systems span

a wide range which is in GHz region. Most of signal processing including encoding,

multiplexing, RF generation, and modulation are carried out by CO and shared with

several base stations, hence making it easy to install and maintain [34, 43]. According

to Singh and Singh [43], RoF has several applications other than WLAN, such as

Video Distribution Systems (VDS), satellite control, cellular networks, vehicle

communication, and mobile broadband services.

Another approach of wireless technology is by using Radio-and-Fiber (R&F)

technology. R&F is an improvement of RoF which uses two MAC protocols that make

simpler transportation of data from wireless to optical and vice versa. Besides, R&F

has also distributed processing with storage capabilities and can perform additional

functions. It reduces the functionality at CO and the task can be managed at ONU.

Compared to RoF, R&F has better QoS, less propagation and larger network coverage

[24, 47]. In this thesis, R&F is used in the proposed testbed because the wireless and

fiber links are using different MAC protocols [21, 48, 49]. R&F provides extended

coverage of the network without having to install optical backhaul which has limited

length and size of fibers, making the testbed to be cost-efficient.

2.3 Testbed Architecture

Testbed is an equipment or setup which is used to test a new type of technology in

order to prove a new concept or to enhance the current technology. There are two types

of testbed; field testbed and lab-scale testbed. Field testbed is used in a wide scale area

such as in an industrial area that requires heavy duty equipment and setup. Whereas,

lab-scale testbed is used in a lab which uses small and simple equipment such as

microcontroller and microprocessors. Testbed can be implemented for various

architectures and setups in order to operate. Hence, this section explains testbed

architectures in three different media; fiber, wireless and FiWi. Fiber architectures

14

such as PON is used in a testbed in order to provide very low latency, reliability, and

robustness for the data transmission in a large amount of bandwidth to achieve a great

performance. Whereas, wireless architectures such as WiFi is used in order to provide

mobility and scalability on a testbed so that it can be implemented in wide area. The

summary of these architectures are tabulated at the end of this section.

2.3.1 Fiber

Szymanski and Rezaee [50] proposed a testbed as a proof-of-concept of Guarantee-

Rate (GR) by using Field-Programmable Gate Array (FPGA) and PON. The testbed

comprises of two planes; control plane and forwarding plane. At the control plane,

SDN is implemented to control 128 traffic flows through the packet switches. Whereas

at the forwarding plane, it consists of eight controllers and Altera Cyclone IV FPGA

as the packet switches. This testbed architecture reduces the end-to-end delay between

clients. The control plane has the ability to bypass Layer 3 (L3) IP routers using a

Layer 2 (L2) underlay which improves the energy efficiency significantly. The FPGA

controller can handle routers and switches with aggregate data rates in hundreds of

Terabits per second (Tbps).

Yang et al. [51] developed a testbed in order to analyse the performance of software

defined optical access network (SDOAN) architecture for remote unified control based

on OpenFlow-enabled PON. The testbed comprises of two planes; control plane and

data plane. The control plane is where OpenFlow is installed on a server computer to

remotely control the traffic flows on the data plane. The data plane is where PON is

deployed to transport all the data from a source to a destination. This architecture is

designed to allocate the network bandwidth resources and detect the status of the

network flows in real time flexibly and efficiently. The control plane and data plane

communicate with one another via Reconfigurable Optical Add-Drop Multiplexers

(ROADMs). SDOAN enhances the resource utilization and QoS guarantee of each

user effectively through unified control plane and reduce operating expenses by remote

interaction and operation. Besides, the separation of control and data plane has a

positive impact on the network because if there is any broken links on the data plane,

it will not affect the control plane. Also, if the control plane is broken, it will not affect

15

the data plane. Hence, this type of architecture saves the cost of maintaining the

network. Another work by Yang et al. [52] has similar architecture with [51]. Instead

of using server computers to enable OpenFlow, [52] used netFPGA at the control

plane. However, netFPGA shows lower performance than server computers as

netFPGA has lower specifications. Hence, the control and management on the network

is less effective.

Okamoto et al. [53] proposed a programmable OLT (P-OLT) and programmable ONU

(P-ONU) testbed. The aim of this work is to analyse the performance of the proposed

P-OLT and P-ONU in terms of throughput and packet loss rate. The architecture of

this testbed comprises of a proxy server, P-OLT, P-ONU, a server and a client. The

proxy server is placed at the control plane of the testbed to be used as the buffer for

the data, control the transmission timing periodically and provides traffic shaping of

burst traffic. P-OLT and P-ONU are programmed by using FPGA. Whereas the server

and client act as the end-to-end data transmission nodes. The advantage of this

architecture is that it can be implemented for a large-scale testbed. The results of this

testbed show that the packet loss rate is consistently at 0% even when the number of

ONU increases. However, the throughput decreases as the number of ONU increases.

Despite of having such advantages, FPGA is complex because it has a lot of

configurable logic blocks where each of them comprises of many logic gates and look

up tables. Due to this complexity, FPGA requires a lot of power consumptions

compared to other embedded system hardware like Raspberry Pi. Furthermore, FPGA

is also complex in terms of programming. For example, if the user wants to create a

delay, the user needs to use arithmetic functions first to define the prescaler in order to

slow down the default clock. Moreover, FPGA does not store the program when it

turns off. This means that, once FPGA is switched off, all the programs and functions

defined by the user will be erased. This makes FPGA takes longer boot time and takes

longer time to do the experiments. Furthermore, FPGA needs an external flash memory

in order to overcome this problem which makes it further cost-inefficient. It is also not

durable since it is sensitive to electrostatic on human body.

Luis et al. [54] proposed a Spatial Division Multiplexing (SDM) network testbed that

consists of three nodes that are connected together via 19-core multicore fibers. The

16

nodes communicate with each other via ROADM. This work is to provide performance

evaluations for the proposed testbed. The results of the testbed show that SDM network

can provide ultra-high capacity links and high-quality connections even when packet

and circuit switching are in the same network.

In 2018, Azofra et al. [55] created a testbed with fiber medium to evaluate the

performance of Software Defined Network (SDN)-based GPON. The testbed provides

fast, efficient and accurate QoS management by using Raspberry Pi. It comprises of

an OLT, two fiber splitters and 5 km standard Single Mode Fiber (SMF). The OLT has

two main components, which are one L3 model Optical Network Terminal (ONT)

which includes router functionalities and comply with International Telegraph Union

– Telecommunication Standardization Sector (ITU-T) G.9894.x and G.988 standards

and one Raspberry Pi to enable OpenFlow. Hence, the performance of the network can

be improved by using this testbed because the user can freely manage and control the

traffic flows.

Based on the literature review in this section, it can be found that most authors use

FPGA and SDN-based control plane as the proposed testbed to enhance the

performance of PON. Despite of having improvements such as programmability and

flexibility, as well as fast, and efficient, the performance of FPGA and SDN-based

control plane are limited compared to industrial grade hardware or server computers

due to their limited specifications. Compared to FPGA, SDN-based control plane such

as Raspberry Pi is simpler, fast reconfigurable and implementation, cost efficient,

lower power consumption and space-friendly. This is because Python is used as the

main the programming language in Raspberry Pi because the user does not require to

do any complex mathematical or arithmetic expressions just to execute a simple

function such as delay. It is fast reconfigurable and fast implementations because the

user does not require to reprogram it when it is turned off. All the programs have been

stored and can be automatically executed when it is turned on. It is more cost-efficient

than FPGA because it can execute the same functions and program as FPGA at a lower

price. Unlike FPGA, Raspberry Pi requires low power consumption to boot because it

can also be powered by using power bank. Lastly, Raspberry Pi has more durability

since it is not as sensitive to electrostatic as FPGA. Hence, an extensive experiment

17

can be done in various environments either it is indoor or outdoor. With that, it can be

concluded that Raspberry Pi is more practical and simpler to be used as a testbed than

FPGA.

2.3.2 Wireless

In 2015, Singh and Talasila [56] proposed a wireless testbed to provide comparative

analysis of different routing protocols which are Better Approach to Mobile Ad hoc

Networking (BATMAN)-advance and Hybrid Wireless Mesh Network (HWMN) in

WSN. There are five TP-LINK WR1043ND routers that used in this testbed. TP-LINK

WR1043ND routers are high speed gigabit wireless routers that capable of achieving

up to 450 Mbps when operated at 2.4 GHz. These routers also have three antennas to

provide the users with larger coverage and stronger wireless signals. Hence, more

accurate results can be achieved.

In 2016, Prusty et al. [57] proposed a testbed to analyse the link quality in packet

routing for Wireless Ad-hoc Sensor Network (WASN). The testbed comprises three

types of hardware which are NI WSN-9791 Ethernet gateway, NI WSN-3202

programmable analogue input node, and NI WSN-3212 programmable thermocouple

input node. NI WSN-9791 Ethernet gateway is to coordinate the communication

between distributed WSN nodes and host controller or base station. NI WSN-3202

programmable analogue input node acts as the wireless route to transmit packets from

other nodes to the gateway. NI WSN-3212 programmable thermocouple is a

temperature sensor where it sends the temperature data to the wireless router. The

testbed is also useful in understanding of the characteristics and behaviour of low-

power links in WASN to help designing a suitable protocol.

Barolli et al. [58] proposed a wireless testbed to analyse the performance of

OpenWRT-based testbed for Content Centric Network (CCN) by using Optimised

Link State Routing (OLSR). In this testbed, Raspberry Pis are used as the wireless

nodes. OpenWRT command is used on the Raspberry Pis for them to communicate

with one another. The advantage of using Raspberry as the testbed is that since it

operates on an open source kernel, it is reconfigurable because it can be embedded

18

with various algorithms. However, Raspberry Pi only suitable to be implemented in a

small-scale experiment due to its small bandwidth and limited specifications.

Zhang et al. [59] proposed a wireless testbed by implementing Multichannel

Opportunistic Routing (MOR) in order to improve the robustness of WS network to

interference. In this testbed, 16 Zigbees are used as the wireless nodes to implement

MOR. Zigbee is a low-cost and low-power wireless hardware. However, Zigbee has

low-rate data transmission which only suitable for a small scale testbed such as in a

lab.

Jecan et al. [60] proposed a testbed to evaluate the performance for industrial WSN

dual-standards which are ISA100.1a and WirelessHART in star and mesh topologies.

There are two types of hardware for the testbed; VR950 gateway and VS210 wireless

sensor nodes. VR950 gateway is to enable the ISA100.1a and WirelessHART

standards. VR950 is widely used in industrial field such as oil and gas, mining, and

manufacturing where safety, security and reliability are the priorities. Whereas the

VS210 wireless sensor nodes are to receive from other temperature, humidity and

pressure sensors wirelessly. Since the experiment is for industrial WSN, VS210 has a

short circuit protection for all input and output ports. In mesh topology, there are 100

wireless sensor nodes, whereas, in star topology, there are 50 wireless sensor nodes.

By implementing dual-standards in one testbed, a better overall performance of

industrial WSN can be achieved.

In 2019, Pakzad et al. [61] proposed a wireless testbed to provide performance

comparison between two widely used protocols in WMN which are OLSR and

BATMAN. The testbed comprises of 37 wireless nodes which are equipped with Intel

core i7-2600 processor, 4 GB RAM, 240 GB SSD and two wireless interfaces with

three antennas. The nodes were arranged in a 1 m grid covering 90 m2 area. USRP is

placed between the nodes to generate interference. The advantage of this architecture

is that it is built in a secluded area where no other interference other than from USRP.

Hence, the results obtained are accurate.

19

Based on the literature review in this section, we can find that most authors used high

specifications for wireless nodes and routers in order to achieve robust and efficient

results. There are only two authors who proposed a small scale testbed which are Jecan

et al. [60] and Barolli et al. [58].

2.3.3 Fiber-Wireless

In 2016, Nguyen and Cheriet [62] proposed a work in order to provide a solution for

rearchitecting a telecommunication company’s CO. This solution offers services in a

smart community by using SDN. The testbed has three main components. The first

one is a core switching platform that provides optical multiservice to link the Smart

Residence to Internet providers, as well as to international partners. This switching

platform is integrated into the smart edge that makes it programmable by implementing

SDN functions such as dynamic routing and traffic filtering. The second component is

an optical access platform that consists of virtual home gateways and optical

aggregation switches that link smart home and WiFi APs to the core switch. The third

component is a set of telco-grade blade servers that provide various telecommunication

services as well as monitoring, power management, and emergency alerting. Based on

the monitoring services, a database containing user, power, and resource data,

analytical services are developed to extract the information, then, optimizes the

resource and service provisioning.

Xu et al. [63] proposed a work to compare the performances of filter-bank multicarrier

(FBMC) and OFDM with and without centralized pre-equalization in a FiWi

integrated mobile fronthaul (MFH) network. The testbed comprises of one baseband

unit (BBU) pool, one RAU, two user equipment (UE) terminals, distributed feedback

(DFB) laser that is used as downlink light source, and Tektronik 7122C arbitrary

waveform generator (AWG).

In 2017, Rimal et al. [64] provide an enhancement for capacity-centric FiWi broadband

access networks by implementing cloudlet-aware resource management scheme. The

testbed comprises of Sun Telecom GE8100 as the OLT, four Sun Telecom GE8200 as

the ONUs, WLAN access point, Dell Optiplex 9020 desktop as the cloud server and

20

Dell Inspiron 3521 laptop as the wireless edge device. However, in 2018, Rimal et al.

[2] proposed an improvement by designing a capacity-centric FiWi broadband access

networks enhanced with edge computing to guarantee low end-to-end latency. The

testbed hardware are the same as before, but instead of using cloudlet server and

WLAN access point, the author used Ubuntu 14.04 Desktop as the Edge Cloud and

ZyXEL NWA570N wireless access point. Ubuntu 14.04 is a Linux-based Operating

System (OS) that enables the user to freely reconfigure the network because it is an

open source OS. ZyXEL NWA570N has 300 Mbps of throughput and can cover wide

range of wireless communication.

In 2018, Ridwan et al. [21] conducted an experiment in order to achieve two objectives

which are to study the performance evaluation of the upstream FiWi testbed

transmission in terms of throughput, transmission time, and jitter and also its

reconfigurability. The testbed comprises of four Universal Software Radio Peripheral

(USRP) 2922, 1:4 splitter, optical to electrical (E/O) converters, electrical to optical

(O/E) converters, and fiber optics. USRP are used as OLT and ONU as well as due to

their reconfigurability. USRP wireless signals can reach up to 100 m when operated at

30 dB output power.

Liu et al. [65] proposed a FiWi testbed to provide performance evaluation of integrated

heterogenous networking scheme for multi-access networks that uses network

virtualization to achieve the dynamic orchestration of the network, storage and

computing resource. This testbed has two planes; control plane and physical

infrastructure plane or data plane. At the control plane, MEC server is used to install

OpenFlow in order to control and manage the data flow in the data plane. SDN

switches are used to enable control plane and data plane communicate

intercommunication. At the data plane, the SDN switches acting as the routers are

connected with one another via 20 km and 40 km fiber optics. One of the routers is

connected with AP to enable the wireless access to the mobile devices, in this case,

laptops.

Turk and Zeydan [66] conducted an experiment to introduce a guidance framework to

Mobile Network Operators (MNOs) so that they can enable converged fixed and

21

mobile services with customized QoS support. The main hardware in this testbed are

Nokia 7360 ISAM FX as the OLT, three Nokia 7750 SR-7 as the routers and security

gateway, radio access network (RAN) to provide cellular services and Nokia 7705

SAR-A cell router. The routers for this testbed support from 10 Gbps to 2 Tbps of

bandwidth as well as hierarchical QoS (HQoS).

Lastly, work by Alfadhli et al. [67] proposed a FiWi testbed that provides an

experimental quantitative latency analysis of different low function split options at the

fronthaul for ultra-reliable low latency communications (URLLC). The testbed

comprises of two computers that act as a server and a client, E/O and O/E converters,

USRP-b210 to generate interference, AWG to produce 1 GHz bandwidth OFDM

signal at a carrier frequency of 1 GHz, photodiode and laser diode to produce light

sources. USRP-b210 is an open and reprogrammable software defined radio that allow

the user to immediately begin developing with GNU radio and develop a prototype

with high performance.

Based on the literature review in this section, we can find that there are various field

of studies involving FiWi from small scale testbed to an industrial scale testbed,

proving that FiWi has a lot of rooms for improvements. The advantage of small scale

testbed is that it is cost efficient, space friendly and able to produce results close to

industrial scale testbed.

To conclude this section, Table 2.1 summarizes all of the testbed architectures

including the objective of each work, the testbed details and the media used in the

testbed.

22

Table 2.1 Testbed architecture summary

Title Objective Testbed details Medium

An FPGA

Controller for

Deterministic

Guaranteed-Rate

Optical Packet

Switching, 2015

[50]

- To provide a proof-of-

concept GR testbed by

using FPGA and PON.

- The forwarding plane of

the testbed consists of

eight controllers and

Altera Cyclone IV FPGA

as the packet switches.

- SDN control plane of the

testbed routes 128 traffic

flows through the packet

switches.

Fiber

Experimental

Demonstration

of Remote

Unified Control

for OpenFlow-

Based Software-

Defined Optical

Access

Networks, 2016

[51]

- To analyse the

performance of SDOAN)

architecture for remote

unified control based on

OpenFlow-enabled PON

- The testbed comprises of

two planes; control plane

and data plane

- In the control plane,

OpenFlow is installed in

the servers

- In the data plane, PON is

deployed.

- Control plane and data

plane communicate with

each other by using four

(ROADMs)

Fiber

SUDOI:

Software

Defined

Networking for

Ubiquitous Data

Center Optical

Interconnection,

2016 [52]

- To study the feasibility

and efficiency of the

proposed architecture by

using the testbed with

OpenFlow-enabled optical

nodes.

- The testbed comprises of

two layers; control layer

and data layer.

- In control plane,

OpenFlow is installed in

netFPGA

- In data plane, PON is

deployed and can

communicate with control

plane via ROADM.

Fiber

23

Title Objective Testbed details Medium

Logical Optical

Line Terminal

Technologies

Towards

Flexible And

Highly Reliable

Metro And

Access-

Integrated

Networks, 2017

[53]

- To analyse the

performance of P-OLT

and P-ONU.

- Hardware used in this

testbed:

 1) proxy server – used as

the buffer for the data,

controls the transmission

timing periodically, and

provides traffic shaping of

burst traffic

 2) P-OLT and P-ONU

 3) Server and client

Fiber

Demonstration

of an SDM

Network

Testbed for Joint

Spatial Circuit

and Packet

Switching, 2018

[54]

- To provide performance

evaluations for the

proposed testbed.

- SDM network testbed

consists of three nodes

that are connected

together via 19-core

multicore fibers.

- The nodes communicate

with each other via

ROADM.

Fiber

Implementation

of a Testbed to

Analysis a SDN

Based GPON,

2018 [55]

- To evaluate the

performance of SDN-

based GPON to provide

fast, efficient and accurate

QoS management.

- The testbed comprises of:

 1) OLT – consists of one

L3 model ONT and one

Raspberry Pi to enable

OpenFlow

 2) two splitters

 3) 5 km standard SMF

Fiber

24

Title Objective Testbed details Medium

A Practical

Evaluation for

Routing

Performance of

BATMAN-ADV

And HWMN in

A Wireless

Mesh Network

Testbed, 2015

[56]

- To provide a comparative

analysis of different

routing protocols which

are BATMAN-advance

and HWSN in WMN.

- Five TP LINK

WR1043ND routers are

used for BATMAN-

advance and HWSN

experimental setup.

Wireless

Testbed for Link

Quality

Assessment in

Wireless Ad-hoc

Sensor Network,

2016 [57]

- To analyse the link quality

in packet routing for

WASN by conducting an

experiment on a testbed.

- The testbed consists of

three types of hardware:

 1) NI WSN-9791 Ethernet

Gateway – to coordinate

the communication

between distribute WSN

nodes and host controller

or base station.

 2) NI WSN-3202 ±10 V

Programmable Analog

input node – act as the

wireless router to transmit

packets from other nodes

to the gateway

 3) NI WSN-3212

Programmable

Thermocouple input node

– sense the temperature,

then send the data to the

wireless router.

Wireless

25

Title Objective Testbed details Medium

Experimental

Results of A

Raspberry Pi

and OLSR-

Based Wireless

Content Centric

Network

Testbed

Considering

OpenWRT OS,

2016 [58]

- To analyse the

performance of

OpenWRT-based testbed

for CCN by using OSLR

protocol.

- Raspberry Pis are used as

the wireless nodes.

OpenWRT is used to

communicate with one

another.

Wireless

MOR:

Multichannel

Opportunistic

Routing for

Wireless Sensor

Networks, 2017

[59]

- Implementing MOR to

improve the robustness of

WSN network to

interference.

- 16 Zigbees are used as the

wireless nodes to

implement MOR.

Wireless

A Dual-Standard

Solution for

Industrial

Wireless Sensor

Network

Deployment:

Experimental

Testbed and

Performance

Evaluation, 2018

[60]

- To evaluate the

performance for a dual

standard Industrial WSN

by employing star and

mesh topology.

- The testbed consists of

two types of hardware;

 1) VR950 Gateway – to

enables the ISA100.1a

and WirelessHART

standards.

 2) VS210 wireless sensor

nodes – to receive data

from temperature,

humidity and pressure

sensors wirelessly.

- In mesh network, there are

100 wireless sensor nodes,

whereas, star network has

50 wireless sensor nodes.

Wireless

26

Title Objective Testbed details Medium

R2Lab Testbed

Evaluation for

Wireless Mesh

Network

Experiments,

2019 [61]

- To provide a comparison

between two widely used

protocols in WMN; OLSR

and BATMAN

- Using 37 wireless nodes

which are equipped with:

 1) Intel Core i7-2600

processors, 4 GB RAM,

240 GB SSD.

 2) Two wireless interfaces

with 3 antennas each;

Atheros 802.11 93xx

a/b/g/n and Intel 5300

chips.

- The distance for the

wireless nodes are 1 m

from each other in a 90 m²

area.

- Universal Software Radio

Peripheral (USRP) is used

to generate interference.

Wireless

Virtual Edge-

Based Smart

Community

Network

Management.

IEEE Internet

Computing,

2016 [62]

- To provide a solution for

rearchitecting a

telecommunication

company’s CO to offer

services in a smart

community by using

virtual network function

elements which is SDN.

- The testbed has three

components:

 1) a core switching

platform is implemented

with SDN functions

 2) An optical access

platform consists of

virtual home gateways

and optical aggregation

switches linking smart

home and WiFi APs to the

core switch.

 3) A set of telco-grade

blade servers to provide

various

telecommunication

services

FiWi

27

Title Objective Testbed details Medium

FBMC in Next-

Generation

Mobile

Fronthaul

Networks With

Centralized Pre-

Equalization.

IEEE Photonics

Technology

Letters, 2016

[63]

- To compare the

performances of FBMC as

well as OFDM with and

without centralized pre-

equalization in a fiber-

wireless integrated MFH

network.

- The testbed comprises of:

 1) one BBU pool

 2) one RAU

 3) two UE terminals

 4) DFB laser is used as

DL light source

 5) Tektronik 7122C AWG

FiWi

Cloudlet

Enhanced Fiber-

Wireless Access

Networks for

Mobile-Edge

Computing,

2017 [64]

- To provide an

enhancement for capacity-

centric FiWi broadband

access networks by

implementing cloudlet-

aware resource

management scheme.

- The testbed comprises of:

 1) Sun Telecom GE8100

as the OLT

 2) four Sun Telecom

GE8200 as the ONUs

 3) WLAN access point

 4) Dell Optiplex 9020

Desktop as the cloudlet

server

 5) Dell Inspiron 3521

laptop as the wireless

edge device

FiWi

28

Title Objective Testbed details Medium

Experimental

Testbed for

Edge Computing

in Fiber-

Wireless

Broadband

Access

Networks, 2018

[2]

- To design capacity-centric

FiWi broadband access

networks enhanced with

edge computing to

guarantee low end-to-end

latency.

- The testbed comprises of:

 1) Sun Telecom GE8100

as the OLT

 2) four Sun Telecom

GE8200 as the ONUs

 3) ZyXEL NWA570N

wireless access point

 4) Ubuntu 14.04 Desktop

as the Edge Cloud

 5) Dell Inspiron 3521

laptop as the wireless

edge device

FiWi

Feasibility Study

of a

Reconfigurable

Fiber-Wireless

Testbed Using

Universal

Software Radio

Peripheral, 2018

[21]

- To study the performance

evaluation of the upstream

FiWi testbed transmission

in terms of throughput,

transmission time, and

jitter.

- To test the testbed

reconfigurability

- The testbed comprises of:

 1) four USRP 2922 as the

OLT and ONU

 2) 1:4 splitter

 3) O/E and O/E converters

 4) fiber optic

FiWi

Performance

Evaluation of

Integrated

Multi-Access

Edge Computing

And Fiber-

Wireless Access

Networks, 2018

[65]

- To provide performance

evaluation of integrated

heterogenous networking

scheme for multi-access

edge computing and FiWi

access networks that uses

network virtualization to

achieve the dynamic

orchestration of the

network, storage and

computing resource.

- The testbed comprises of:

 1) 20 km and 40 km fiber

optics

 2) core switch

 3) three SDN switches

with optical and Ethernet

forwarding capability

 4) WLAN Access Points

 5) MEC servers

FiWi

29

Title Objective Testbed details Medium

An

Experimental

Measurement

Analysis of

Congestion Over

Converged

Fixed and

Mobile

Networks, 2018

[66]

- To introduce a guidance

framework to MNOs so

that they can enable

converged fixed and

mobile services with

customized QoS support.

- The testbed comprises of:

1) Nokia 7360 ISAM FX as

the OLT

2) three Nokia 7750 SR-7

routers and security

gateway

3) radio access network to

provide cellular services

4) Nokia 7705 SAR-A cell

router

FiWi

Latency

Performance

Analysis of Low

Layers Function

Split for URLLC

Applications in

5G Networks,

2019 [67]

- To provide an

experimental quantitative

latency analysis of

different low function

split options at the

fronthaul for ultra-reliable

low latency

communications URLLC

- The testbed comprises of:

 1) two computers to serve

as client and server

 2) E/O and O/E converters

 3) USRP-b210 to generate

RF interference

 4) AWG is used to

produce 1 GHz bandwidth

OFDM signal at a carrier

frequency of 1 GHz.

 5) photodiode and laser

diode

FiWi

30

2.4 Router Testbed

This section explains router testbed in three different approaches; software-based,

commercial-based, and embedded system-based. Software-based router is a router that

developed by using softwares and the produced results are purely from simulations.

Commercial-based routers are routers that are available in the market either off-the-

shelf or industrial grade routers because they are widely used in various industrial

fields. Whereas, embedded system-based routers are routers that are built by using

embedded system hardware such as FPGA and Raspberry Pi, which are mostly used

in lab-scale experiments. The summary of these approaches are tabulated at the end of

this section.

2.4.1 Software-based Router

In 2015, Bahnasy et al. [68] proposed a simulation evaluations by using OpenFlow to

control both packet which is called as OpenFlow Messages Mapping and optical

network called as OpenFlow Extension. The simulation results are then compared with

Generalized Multiprotocol Label Switching (GMPLS) approach by using Dynamic

Resource Allocation via GMPLS Optical Networks (DRAGON). DRAGON

comprises of two major components that are used as the control plane for GMPLS

which are, client system agent (CSA) and virtual label switch router (VLSR). The

comparison results show that the OpenFlow Extension solution outperforms

OpenFlow Messages Mapping and GMPLS solutions because it has lower end-to-end

light path setup time and lower blocking ratio and control traffic compared to GMPLS.

One of the advantages of this work is VLSR and OpenFlow uses shortest path routing

causing the delay for the packet is low. Secondly, VLSR is flexible because it can

control different types of switches such as Ethernet, TDM or optical. Furthermore,

VLSR is reliable because it uses TCP/IP protocol to transmit the packets. On the other

hand, OpenFlow controller can recalculate alternative light path in case of light path

failures. OpenFlow also has maximum flexibility and manageability because all the

functionalities are controlled by a single OpenFlow controller. However, these

approaches have disadvantages, such as, VLSR can cause high delay for the packet

because the algorithm is complicated. Its flexibility and manageability are also low

31

because the signalization and reservation messages must be updated and exchanged

among all intermediate VLSRs.

Runge et al. [69] proposed a QoS aware software router model by using Network

Simulator 3 (NS3) and evaluate the performance optimizations. The results show that

the different scheduling strategies of a software router have significant influence on

the performance of handling real time traffic. The advantage of this QoS aware

software router is it has dedicated receiver ring for prioritized packet processing which

will be served according to a specific scheduling strategy. Hence, the packet will be

process faster for low latency constraints real-time traffics such as Voice over IP

(VoIP), video conferencing and online gaming. However, the disadvantages are

explained in [70]. The first disadvantage is that the user does not build up all the

functionalities from scratch, instead, they are utilizing the existing models. The users

must always have to consider which models that are suitable to be used in a certain

context because if it is used in a different context, it malfunctions completely. The

second disadvantage is that it has scalability limits. Which means, there are limited

memory and it requires certain amount of computation time. Every nodes, channels

and other components require memory space, therefore, their numbers are limited by

available memory.

Addie and Natarajan [71] proposed an analysis for Netml systems by using the

simulations of NS3 and Click routers. The Netml system enables an XML description

of a network to be converted into an NS3 program, then, run the simulation to collect

and plot the results on Netml public server. A basic implementation of IPtables is also

implemented. Users are able to specify any number of filtering rules within the

forwarding chain of the filter table. The advantage of using Click router in this work

is that it can build its own firewall. It is completely flexible, configurable and

customizable according to user’s needs. According to Suresh and Merz [72], the main

disadvantage of using NS3 and Click is that some of Click’s MAC elements are not

supported by NS3 yet. Therefore, it will be a tedious work to find a compatible MAC

elements making the work more complicated.

32

The software router by Goswami et al. [73] studied on how to achieve the estimation

of optical-layer power consumption and cost for a long distance optical networks using

Wavelength Division Multiplexing (WDM). The simulation was conducted by using

C++ programming language. The test is implemented on two different networks which

are IP-over-WDM and IP-over-MPLS-over-WDM networks. In the former network

test, which is IP-over-WDM network, IP routers communicate directly with

Wavelength-Routed Optical Network (WRON) and bandwidth requests are equal to

light-path capacity. On the other hand, in IP-over-MPLS-over-WDM network, the IP

routers communicate with WRON through MPLS routers, hence the bandwidth

requests arrived as Label Switch Path (LSP). Therefore, it is lower than light-path

capacity. The advantage of this work is that it is cost efficient and reconfigurable.

However, the disadvantage of C++ in this work is that it is not a specific network

simulation tool. Hence, a lot of assumptions must be made in order to simulate as close

to real network as possible. This will make the produced results to be inaccurate and

cannot be implemented in real network.

In 2016, Ohsugi et al. [74] developed a power consumption model of multicore

software Named Data Network (NDN) router. By applying this model, it is reported

that caching can reduce power consumption when the computation of caching is as

low as during data forwarding. The advantage of using NDN software router is that it

reduces the amount of traffic forwarded towards upstream routers and thus, reduces

the power consumed by their forwarding devices. However, the disadvantage of NDN

is that it has limited scalability, which means, it cannot manage when the network

becomes too complex.

In 2017, In a different work by Xu et al. [75], a framework called Minos has been

proposed to regulate router actions on data planes. Action Identifier (AID) is the input

for Minos to perform lookups in Regulated Action Table (RAT). Minos is expected to

get a couple of distinct factors that will affect the security of a programmable router

such as cost and effectiveness. This is because the reprogrammability of a router makes

it vulnerable and exposed to the risk of being hacked. Minos is implemented and

evaluated separately on Click and Data Plane Development Kit (DPDK). DPDK

comprises of a set of libraries that support efficient implementations of network

33

functions [76]. According to Rajesh et al. [77], Intel DPDK is able to boost packet

processing performance and throughput, hence, allowing more time for data plane

applications. However, DPDK does not have cache coherence and locality making its

access time to be slow.

In 2018, the work by Tajiki et al. [78], focuses on a new traffic engineering architecture

for SDN-MPLS network, where they proposed improving flow-level management

flexibility. It is done by applying OpenFlow-enabled switches at the edge of the

network while the MPLS routers are the core router of the network. The simulation

was done by using MATLAB2016b. The proposed scheme also re-assigns flows in the

LSP to highly utilize the network resource. MATLAB2016b has improved

functionalities in the toolbox that enable users to produce better equations and

algorithms. Hence, more accurate results can be produced. The main disadvantage of

using MATLAB in this work is that it can be slow to process and compute for a such

complex hybrid network like in proposed work.

Lastly, in 2019, Kim et al. [79] proposed a new Internet architecture for the future

mobile network called Mobile-Oriented Future Internet (MOFI). The architecture of

MOFI comprises of two main components; the separation of control and data plane for

getting an optimal data path and distributed identifier as the locator mapping control

for alleviating traffic overhead at the central agent. The architecture of MOFI is built

by using OpenFlow and Click modular router on a Linux platform. The results show

that proposed MOFI able to provide mobility management efficiently and support the

backward compatibility for the current IP network and IP version 6 (IPv6)

applications. The advantage of Click modular router in this work is it is a flexible

software router that enables the user to configure and customize freely according to

the user’s needs. According to Kohler et al. [80], Click can achieve a maximum loss-

free forwarding rate of 333,000 of 64 bytes packets per second when run on Linux

computers, proving that Click’s modular and flexibility architecture is compatible with

good performance. On the other hand, OpenFlow supports IPv6, hence, it can support

more users compared to IPv4. However, user usually uses small elements to create

configurations to develop Click routers. These elements cannot solve problems such

as when control flow and data flow do not match the flow of packets. Therefore, large

34

elements are required to overcome these problems. Hence, this makes the development

of a router complicated since the big elements run a complex process for a protocol

like 802.1d [81].

As conclusion, various of software are used for the software router simulation such as

VLSR, Click, NS3, DPDK, MATLAB2016b, C++ and NDN. Most of the authors were

using Click modular router due to its flexibility, configurability and customizability.

However, the result produced by the software routers do not consider the non-linear

effects because there are no hardware involved.

2.4.2 Commercial-based Router

In 2014, Blair et al. [82] used four MPLS routers in their experiment, with multiple

protocols such as IEEE C37.94, IEC 61850-9-2 Sampled Values, and IEC 61850-8-1

Generic Object-Oriented Substation Event (GOOSE). The study is to demonstrate and

analyse the use of commercial IP/MPLS protocol to carry protection relay hardware to

support power system protection functions. They also used Real-time Digital

Simulator (RTDS) to simulate the power system and interfaced with the hardware

protection relays. RTDS allows power system faults and other events to be simulated

in real-time. The authors run two different experiments. For the first experiment, the

author runs the experiment for nine times. The first five tests are to get the propagation

delay results for a chain of IP/MPLS routers. According to the results, the jitter buffer

size increases as the payload size increases. Thus, the propagation delay increases. For

sixth test onwards are to get the results of propagation delay for ring topology of

IP/MPLS routers. The advantage for the ring setup in sixth test compared to fifth test

is that it has rerouting capability because the setup has an alternate path for the packets

in case of broken link. There is small difference in terms of propagation delay for the

sixth and seventh test due to the variation of delay in the hardware. At the eighth and

ninth test, the propagation delay increases when number of C37.94 slots decreases

even when the payload size is very small. This is because the main purpose of the slots

is to define the end-to-end usable bandwidth for the packets. Hence, if the number of

slots is small, the usable bandwidth will also be small causing the delay to be high. For

the second experiment, the results show that IEC 61850 SV and GOOSE are better

35

than IEEE C37.94 in terms of circuit breaker tripped time, and backup intertrip time.

Even the bandwidth used by these two protocols is greater, they are able to transfer

much more information for three-phase voltage and current waveforms. The advantage

of IP/MPLS routers in this work is that the routers has the capability to support ring

topology. Hence, the data has better protection because it can be rerouted to another

path in case of broken links. This feature is crucial especially in power system since

the data must flow continuously all the time to detect faults in the system. However,

as mentioned in earlier, the traffic flows in this router are still prone to congestions

because the data for all the services are transmitted in one LSP.

In 2015, Feng et al. [83] proposed a testbed using an OpenFlow module that is

embedded in the control plane of a commercial router. It is used to set up a datapath

with an external OpenFlow controller using OpenFlow protocol. The commercial

router used is DCRM 5980. The testbed proves that it could not only implement the

software-defined networking functionalities for network control flexibility, but also it

is easy for rapid deployment with updating the software image instead of adding or

changing any hardware. The advantage of using DCRM 5980 router in this testbed is

that it can be implemented with other firmware such as OpenFlow. The router also

supports IPv6, hence it can support more users connected to it. It is also flexible and

scalable. Furthermore, it supports VLAN and MPLS. However, after installing

OpenFlow, the routing is based on the shortest path. Hence, the data will use the

shortest path even the path is congested which can cause high delay in data

transmissions and increase the number of packet loss.

In 2016, Sgambelluri et al. [84], implemented Segment Routing (SR) in two different

networks, which are SDN-based and Path Computation Element (PCE)-based. SR

technology is proposed to provide minimum depth segment list encoding for the data

path, hence, less computation delay for both networks. In SDN-based network, SR

controller is implemented in an OpenFlow controller. While in PCE-based network,

SR is implemented where the nodes consist of commercial IP/MPLS routers. The

results for both implementations are similar because the same path and segment list

computation were implemented in both controllers. The routing mechanism of a

commercial IP/MPLS routers is based on the short label header on the data rather than

36

long network addresses. Hence, this router avoids complex lookups in a routing table

to speed up the traffic flows. However, the traffic flows in this router are still prone to

congestions because the data for all the services are transmitted in one LSP.

In 2017, Tantayakul et al. [85] used two commercial routers to evaluate the

performance of open source OpenFlow switches, which are OpenvSwitch (OVS) and

ofsoftswitch13 (CPqD) in terms of UDP throughput, TCP throughput and percentage

of packet loss. The two commercial routers are TP-LINK WR1043ND routers. One of

the routers sets as an OpenFlow switch. Ryu controller is used to manage the routing

path of OpenFlow switches while iperf tool is used to generate UDP and TCP traffics

in order to measure and evaluate the performance. The results show that the maximum

bandwidth of OVS is higher than CPqD for both UDP and TCP traffics. However,

although CPqD has limited bandwidth of 50 Mbps, it provides faster OpenFlow

handshake and uses less memory space compared to OVS. In this work, the advantage

of using TP-LINK WR1043ND routers is that the firmware of the routers can be

reinstall or upgraded to another firmware such as OpenFlow by using OpenWRT.

These routers also provide accurate results in real-time because it has gigabit

bandwidth by default, hence, more data can be transmitted at once. However, these

routers have high packet loss which is around 57% to 58%. This is because the router

was running on CPqD which only has 50 Mbps of bandwidth but the data rate

generated by Iperf is 100 Mbps.

Lastly, in 2019, Chen et al. [86] proposed a local feature-based deep long short-term

memory (LF-DLSTM) approach for WiFi fingerprinting indoor localization by using

TP-LINK WDR4300 router. The experiments were done in two different

environments, which are in a research lab and in an office. The proposed approach is

compared with state-of-the-art methods for indoor localization. The results show that

the proposed approach achieved the best localization performance in these two

environments. When compared with state-of-the-art methods, it achieved

improvements from 18.9% to 53.46% indicating the effectiveness of LF-DLSTM. The

advantage of using TP-LINK WDR4300 router is that it has big coverage because it

has three dual band external antennas. It also has high bandwidth that supports

37

simultaneous data transmission. Hence, more data can be transmitted at once to obtain

accurate results. However, this router is not configurable.

As conclusion, commercial routers are able to produce accurate and high performance

results. However, most of the commercial routers are not reconfigurable in terms of

tweaking its existing program. Even though there are routers in the literature that

embedded with OpenFlow by the authors, its current program is still cannot be

reconfigured. From the literature, we can identify that commercial routers are prone to

frequent congestions, high packet loss and not reconfigurable.

2.4.3 Embedded system-based Router

In 2016, Sivarman et al. [87] used netFPGA as the router to study the role of packet

buffer memory on the power consumption of backbone routers. They have developed

an algorithm for the memory components to sleep and awake when needed, while

being able to control the resulting traffic performance degradation in the form of packet

loss during congestion. They conducted a comprehensive evaluation of their algorithm

by using the simulation of offline traffic traces taken from carrier/enterprise networks

as well as online TCP flow in Network Simulator 2 (NS2). The evaluation also being

implemented on a programmable router testbed which is the netFPGA. NetFPGA is

connected to traffic generators and delay emulators to demonstrate the feasibility of

implementing the algorithm in the hardware. After implemented on netFPGA, the

algorithm has saved 40% of the energy when it is under very heavy load. The

advantage of using netFPGA is it can be reprogrammable by using VHDL

programming language.

Hoo and Kumar [88] proposed a distributed memory parallel FPGA router called

Parallel Router Distributed Memory (ParaDiMe) to speculatively routes in parallel and

dynamically detects the need of reducing the number of active processes in order to

speed up the routing process in the network. The results were compared with other

type of FPGA routing which is called Verilog-to-routing (VTR). Compared to VTR,

ParaDiMe achieved an average speed up of 19.8 times with 32 processes while

producing similar quality of results. The advantages of using FPGA is that it is

38

reconfigurable and reprogrammable. It also has high performance to produce accurate

results.

In 2018, Concatto et al. [89] proposed a custom-made, FPGA-based router with a

simple arithmetic routing engine which is expected to be much more efficient in terms

of power and area utilization. The results of the experiment show that the power

consumption when using arithmetic routing is less than 5 W which is only 12.5% of

the power delivered by FPGA. The throughput and latency of the proposed work show

a promising figure of 8 Gbps and 500 ns per hop respectively. The advantage of using

FPGA in this testbed is that it is reconfigurable and reprogrammable. It also provides

high bandwidth up to 40 Gbps. It has high performance of computation to obtain

accurate results. However, the disadvantages of [87-89] are that they are FPGA-based.

FPGA contains a lot of configurable logic blocks and complicated programming,

making the computation time contributes to overall network latency. This complexity

can degrade the network performance.

Posch et al. [90] proposed a testbed using Banana Pi R1 as a router. This work

demonstrates NDN-based multimedia delivery using adaptive bit-rate streaming.

Additionally, a graphical user interface is provided to create their own network

topology, configure a streaming scenario and observe in near-real time. Two dedicated

networks which are Management Network (MN) and Emulation Network (EN) are

connected with Banana Pi in a star topology. The role of Management Network (MN)

is for configuration and monitoring. While EN is a virtual network overlay that is

created using networking tools such as iptables and traffic control. The purpose of

having the separation between MN and EN is to prevent management and control

interference with running network emulation. Their results presented in [91] show that

the delay is big despite the packets are sent from one node to its adjacent node via

CAT6 Ethernet cable. This is because the Banana Pi is connected with two networks,

hence the processor cannot keep up with the networks, operating systems, and data

transmission at the same time. Supported by the results obtained in [92], it shows that

Banana Pi gives low throughput and high delay for point-to-multipoint connection in

LAN and WAN network despite it has Gigabit Ethernet ports. The advantage of using

Banana Pi is that it has more than one Ethernet port making it space friendly to be a

39

testbed. Furthermore, it already has built-in routing algorithm. However, according to

Lech and Włodarski [92], Banana Pi has its own weakness. It produces a huge delay

which is up to 43 ms for such a simple point-to-multipoint LAN and Wide Area

Network (WAN) topology. Furthermore, according to the author, Banana Pi can cause

a serious problem to the network when it receives a large amount of traffic. These

problems can be overcome by using Raspberry Pi because the user can set an

individual route for each traffic by using socket module in Python. Furthermore, built-

in routing algorithm of Banana Pi is not reconfigurable.

In 2016, Jang et al. [93] proposed a testbed architecture using Raspberry Pi which

allows dynamic configuration of mesh networks and coordination of each flow of

traffic to support application-aware QoS. The router testbed is compatible with legacy

network architecture in IEEE 802.11 ad-hoc network. The proposed testbed prioritizes

the video streaming application instead of file transfer. This limits the file transfer

traffic so that it does not harm the video streaming throughput. Hence, the video stream

has less delay because intermediate router prioritizes the traffic in order to comply with

QoS requirement predefined by the router testbed algorithm. The advantage of using

Raspberry Pi as router testbed is that it is reconfigurable and scalable. It is also cost-

efficient to be the testbed. However, Raspberry Pi has low performance due to its

hardware limitations that might cause high delay during data transmission. In this

work, the Raspberry Pi router testbed has no rerouting mechanism in case of

congestion.

Piao et al. [94] proposed a wireless communication prototype by using Raspberry Pi

to communicate with Android smartphones. The Raspberry Pi is installed with NDN

routing mechanism called NDN Forwarding Daemon (NFD). The routing mechanism

is based on shortest path. The results show the relationship between communication

delay and number of pings. Based on the results, the communication delay reached its

peak when the number of ping is 45. The advantage of using Raspberry Pi in this work

is that it is reconfigurable and scalable. The kernel of Raspberry Pi is an open source

kernel which can be used to write and execute custom algorithm. However, the routing

mechanism in this work is based on shortest path. Hence, it does not reroute in case of

congested path. As mentioned earlier, Raspberry Pi has low performance due to its

40

hardware limitations. But it is acceptable because the results produced are very close

to the results produced by commercial routers and they are still within an acceptable

range of communication standards.

Lastly, Gupta et al. [95] has proposed a small size, low cost and portable SDN switch

testbed using Raspberry Pi. The Raspberry Pi only has 1 Ethernet port, but the authors

extended it by using three low-cost USB-based LAN cards. In order to make the

Raspberry Pi as SDN switch, it is installed with Ubuntu MATE 15.04 instead of

Raspbian to support the latest version of OpenFlow switch. Four laptops are connected

to the SDN switch as client, POX/RYU controller, and the other two laptops act as the

servers. The testbed has no numerical results yet but it is claimed to support OpenFlow

Specification 1.0 to 1.4. The main advantage of using Raspberry Pi in this work is that

it is space-friendly for a lab-scale testbed.

As conclusion, embedded system-based routers are reconfigurable, reprogrammable,

scalable, space friendly and cost-efficient. These advantages of embedded system-

based routers make them an ideal choice as the lab-scale router testbed for research

and academic purposes. In this section, the main embedded system hardware used in

the literature are FPGA, Banana Pi and Raspberry Pi. However, embedded system like

FPGA is complex to be reconfigured. It is also sensitive to electrostatic charges on

human body and not cost efficient. Whereas, built-in routing of Banana Pi is not

reconfigurable. These problems are solved by using Raspberry Pi since both the kernel

and algorithms are completely configurable.

In [93], the proposed wireless Raspberry Pi routers are connected in mesh setup.

Therefore, each router needs extra computational time to decide which route to use

just for point-to-point communications. Hence, the redundant computational time

contributes to overall degradation of network performance. Furthermore, proposed

FiWi router testbed has better scalability since the testbed covers both fiber and

wireless transmissions. In [94], the proposed router uses Raspberry Pi 2 which has

lower hardware specifications than proposed FiWi router in this thesis. Furthermore,

built-in routing mechanism in NDN that is implemented in Raspberry Pi 2 is not

reconfigurable. Compared to proposed FiWi router in this thesis, the Raspberry Pi 3B+

41

used has better hardware specifications, hence, it is able to produce better performance.

Furthermore, its routing mechanism can be reconfigured freely according to the user’s

needs. Lastly in [95], Raspberry Pi is used to run OpenFlow to become a router.

However, the built-in routing program cannot be reconfigured freely by the user unlike

proposed FiWi router in this thesis

Table 2.2 Router testbed summary

Title Description Advantages Disadvantages

Software-based

OpenFlo

w and

GMPLS

Unified

Control

Planes:

Testbed

Implemen

tation

And

Comparat

ive Study,

2015 [68]

- This paper proposed

and experimentally

evaluates two

solutions using

Open Flow (OF)

and OpenFlow

Extension. The

results are evaluated

and compared with

Dynamic Resource

Allocation via

GMPLS Optical

Networks

(DRAGON)

- DRAGON

comprises of two

major components;

client system agent

(CSA) and virtual

label switch router

(VLSR).

- VLSR and CSA are

used as the control

plane for GMPLS.

- VLSR and OF uses

shortest path routing

causing the low delay

for the packets.

- VLSR can control

different types of

switches.

- VLSR is reliable

- OF controller can

recalculate alternative

light path in case of

light path failures.

- OF has maximum

flexibility and

manageability

- VLSR causes high

delay for the packet

because the algorithm is

complicated. The

flexibility and

manageability are low

because the

signalization and

reservation messages

must be updated and

exchanged among all

intermediate VLSRs.

- OF and VLSR are not

intelligent since it will

choose the shortest path

even though the path is

congested.

- No hardware involved.

42

Title Description Advantages Disadvantages

Software-based

Towards

Low

Latency

Software

Routers,

2015 [69]

- Proposed a QoS

aware software

router model by

using NS3 and

evaluate the

performance

optimizations.

- The QoS aware

software router model

has dedicated receiver

ring for prioritized

packet processing

which will be served

according to a specific

scheduling strategy.

Hence, the packet will

be process faster for

low latency

constraints real-time

traffics such as VoIP,

video conferencing,

and online gaming.

- There is no hardware

involved, hence, no

non-linear effects are

considered in the

simulations.

- Disadvantages:

1) user does not build

up all the functionalities

from scratch, instead,

they are utilizing the

existing models.

2) scalability limits

Netml-

ns3-click:

modeling

of routers

in

Netml/ns

3 by

means of

the click

modular

router,

2015 [71]

- Proposed an

analysis for Netml

systems by using

the simulations of

NS3 and Click

routers. The Netml

system enables an

XML description of

a network to be

converted into an

NS3 program, then,

run the simulation

to collect and plot

the results on Netml

public server. A

basic

implementation of

IPtables is also

implemented.

- The advantage of

using Click router in

this work is that it can

build its own firewall.

- Click router is

completely flexible,

configurable and

customizable

according to user’s

needs.

- No hardware involved

- Some of Click’s MAC

elements is not

supported by NS3 yet.

43

Title Description Advantages Disadvantages

Software-based

On

methodol

ogies to

estimate

optical-

layer

power

consumpt

ion and

cost for

long-haul

WDM

networks

with

optical

reach

constrain,

2015 [73]

- Studied how to

achieve the

estimation of

optical-layer power

consumption and

cost for a long

distance optical

networks using

Wavelength

Division

Multiplexing

(WDM). The test is

implemented on two

different networks

which are IP-over-

WDM and IP-over-

MPLS-over-WDM

networks.

- The simulation was

conducted by using

C++ programming

language.

- Cost efficient

- reconfigurable

- No hardware involved

- A lot of assumptions

must be made in order

to simulate as close to

real network as

possible. This will make

the produced results to

be inaccurate and

cannot be implemented

in real network.

44

Title Description Advantages Disadvantages

Software-based

Power

consumpt

ion model

of NDN-

based

multicore

software

router

based on

detailed

protocol

analysis,

2016 [74]

- Developed a power

consumption model

of multicore

software Named

Data Network

(NDN) router.

- It reduces the amount

of traffic forwarded

towards upstream

routers and thus,

reduces the power

consumed by their

forwarding devices.

- Has limited scalability

- No hardware involved

MINOS:

regulating

router

dataplane

actions in

dynamic

runtime

environm

ents, 2017

[75]

- A framework

called Minos has

been proposed to

regulate router

actions on data

planes.

- Minos is

implemented and

evaluated

separately on Click

and Data Plane

Development Kit

(DPDK).

- DPDK comprises of a

set of libraries that

support efficient

implementations of

network functions

[76].

- DPDK able to boost

packet processing

performance and

throughput, hence,

allowing more time

for data plane

applications [77].

- DPDK does not have

cache coherence and

locality making its

access time to be slow.

- No hardware involved

in this work

45

Title Description Advantages Disadvantages

Software-based

SDN-

Based

Resource

Allocatio

n in

MPLS

Networks

: A

Hybrid

Approach

, 2018

[78]

- Proposed on a new

traffic engineering

architecture for

SDN-MPLS

network, where

they improve flow-

level management

flexibility. It is

done by applying

OpenFlow-enabled

switches at the

edge of the

network while the

MPLS routers are

the core router of

the network.

- The simulation was

done by using

MATLAB2016b.

- MATLAB2016b has

improved

functionalities in the

toolbox that enable

users to produce better

equations and

algorithms. Hence,

more accurate results

can be produced.

- No hardware involved

- It can be slow to

process and compute for

a such complex hybrid

network like in

proposed work.

46

Title Description Advantages Disadvantages

Software-based

Mobile-

oriented

Future

Internet:

Implemen

tation

And

Experime

ntations

Over EU–

Korea

Testbed,

2019 [79]

- A new Internet

architecture for the

future mobile

network was

proposed, named

Mobile-Oriented

Future Internet

(MOFI). The MOFI

architecture

comprises of two

main components:

(1) separation of

data and control

planes

(2) distributed

identifier–locator

mapping control for

alleviating traffic

overhead at a

central agent. MOFI

architecture is

implemented using

OpenFlow and

Click Modular

Router over a Linux

platform, operated.

- Click modular router

is a flexible software

router that enables the

user to configure and

customize freely

according to the user’s

needs.

- Click can achieve a

maximum loss-free

forwarding rate of

333,000 of 64 bytes

packets per second

when run on Linux

computers, proving

that Click’s modular

and flexible

architecture is

compatible with good

performance [80].

- OF supports IPv6,

hence, it supports

more users than IPv4.

- Click modular router is

not considering non-

linear effects such as

noises and fluctuations

because there is no

hardware involved.

- Small elements cannot

solve problems like

when control and data

flows do not match with

the flow of packets

47

Title Description Advantages Disadvantages

Commercial-based

Demonstr

ation and

analysis

of

IP/MPLS

communi

cations

for

delivering

power

system

protection

solutions

using

IEEE

C37. 94,

IEC

61850

Sampled

Values,

and IEC

61850

GOOSE

protocols

, 2014

[82]

- Used four MPLS

routers in their

experiment. The

study is to

demonstrate and

analyse the use of

commercial

IP/MPLS protocol

to carry protection

relay hardware to

support power

system protection

functions.

- The advantage of

IP/MPLS routers in

this work is that the

routers has the

capability to support

ring topology. Hence,

the data has better

protection because it

can be rerouted to

another path in case of

broken links.

- The traffic flows in

IP/MPLS router are still

prone to congestions

because the data for all

the services are

transmitted in one LSP.

48

Title Description Advantages Disadvantages

Commercial-based

Hybrid

SDN

Architect

ure To

Integrate

With

Legacy

Control

And

Managem

ent Plane:

An

Experienc

es-based

Study,

2015 [83]

- Proposed a testbed

that an OpenFlow

module is embedded

in the control plane

of a commercial

router

- The commercial

router used is

DCRM 5980.

- The router can be

implemented with

other firmware such as

OpenFlow

- The router supports

IPv6, hence supports

more users connected

to it.

- Flexible and scalable

- supports VLAN and

MPLS

- After installing

OpenFlow, the routing

is based on shortest

path. Which means, the

data will use the

shortest path even the

path is congested.

Experime

ntal

demonstr

ation of

segment

routing,

2016 [84]

- Implemented

Segment Routing

(SR) in two

different networks,

which are SDN-

based and Path

Computation

Element (PCE)-

based. In PCE-

based network, SR

is implemented

where the nodes

consist of

commercial

IP/MPLS routers.

- The routing

mechanism of a

commercial IP/MPLS

routers is based on the

short label header on

the data rather than

long network

addresses. Hence, this

router avoids complex

lookups in a routing

table to speed up the

traffic flows.

- The traffic flows in

IP/MPLS router are still

prone to congestions

because the data for all

the services are

transmitted in one LSP.

49

Title Description Advantages Disadvantages

Commercial-based

Experime

ntal

Analysis

in SDN

Open

Source

Environm

ent, 2017

[85]

- Used two

commercial routers

to evaluate the

performance of

open source

OpenFlow switches,

which are

OpenvSwitch

(OVS) and

ofsoftswitch13

(CPqD

- The two commercial

routers are TP-

LINK WR1043ND

routers. One of the

routers sets as an

OpenFlow switch.

- Ryu controller is

used to manage the

routing path of

OpenFlow switches

while iperf tool is

used to generate

UDP and TCP

traffics.

- The firmware of the

router can be reinstall

or upgraded to another

firmware such as

OpenFlow.

- Provides accurate

results in real-time.

- This router has gigabit

bandwidth; hence,

more data can be

transmitted at once.

Thus, more accurate

results can be

obtained.

- Has high packet loss

which about 57% to

58%

- After reinstall to

another firmware, the

bandwidth of the router

reduced significantly.

50

Title Description Advantages Disadvantages

Commercial-based

WiFi

Fingerpri

nting

Indoor

Localizati

on Using

Local

Feature-

Based

Deep

LSTM,

2019 [86]

- Proposed a local

feature-based deep

long short-term

memory (LF-

DLSTM) approach

for WiFi

fingerprinting

indoor localization

by using TP-LINK

WDR4300 router.

The experiments

were done in two

different

environments,

which are in a

research lab and in

an office. The

proposed approach

is compared with

state-of-the-art

methods for indoor

localization.

- The router has big

coverage because it

has three dual band

external antennas.

- Has high bandwidth

which supports

simultaneous data

transmission. Hence,

more data can be

transmitted at once to

obtain accurate

results.

- The router is not

reconfigurable

51

Title Description Advantages Disadvantages

Embedded system-based

Greening

Router

Line-Cards

via

Dynamic

Manageme

nt of Packet

Memory,

2016 [87]

- Used netFPGA as

the router to study

the role of packet

buffer memory on

the power

consumption of

backbone routers.

- The evaluation

also being

implemented on a

programmable

router testbed

which is the

netFPGA.

NetFPGA is

connected to

traffic generators

and delay

emulators.

- The advantage of

using netFPGA is it

can be

reprogrammable by

using VHDL

programming

language.

- The netFPGA is not

cost-efficient and

sensitive to electrostatic

on human body.

- netFPGA is complex as

FPGA

ParaDiMe:

A

Distributed

Memory

FPGA

Router

Based On

Speculative

Parallelism

and Path

Encoding,

2017 [88]

- Proposed a

distributed

memory parallel

FPGA router

called Parallel

Router

Distributed

Memory

(ParaDiMe) to

reduce the

number of active

processes.

- FPGA is

reconfigurable and

reprogrammable

- High performance to

provide accurate

results

- Sensitive to electrostatic

charges on human body

- FPGA is very complex

- Not cost-efficient

52

Title Description Advantages Disadvantages

Embedded system-based

A CAM-

free

Exascalable

HPC

Router For

Low-

Energy

Communic

ations,

2018 [89]

- Proposed a

custom-made,

FPGA-based router

with a simple

arithmetic routing

engine which is

expected to be

much more

efficient in terms

of power and area

utilization.

- FPGA is

reconfigurable and

reprogrammable

- Provide high

bandwidth up to 40

Gbps

- High performance of

computation to obtain

accurate results

- Sensitive to

electrostatic charges

on human body.

- FPGA is very

complex

- Not cost-efficient

Emulating

NDN-based

multimedia

delivery,

2016 [90]

- Proposed a testbed

using Banana Pi R1

as a router. This

work demonstrates

NDN-based

multimedia delivery

using adaptive bit-

rate streaming. Two

dedicated networks

which are

Management

Network (MN) and

Emulation Network

(EN) are connected

with Banana Pi R1

in a star topology.

- It has more than one

ethernet port making it

space friendly to be a

testbed

- Built-in routing

algorithm

- It produces a huge

delay which is up to

43 ms for such a

simple point-to-

multipoint LAN and

Wide Area Network

(WAN) topology [92]

- Banana Pi can cause a

serious problem to the

network when it

receives a large

amount of traffic [92]

- Built-in algorithm not

reconfigurable

53

Title Description Advantages Disadvantages Differences

Embedded system-based

Implemen

ting a

Dynamica

lly

Reconfig

urable

Wireless

Mesh

Network

Testbed

for Multi-

Faceted

QoS

Support,

2016 [93]

- Proposed a

testbed

architecture by

using

Raspberry Pi

which allow

dynamic

configuration

of mesh

networks and

coordination of

each flow of

traffic to

support

application-

aware QoS.

- Raspberry Pi

is

reconfigurable

and scalable

- Cost-efficient

- Low

performance

due to hardware

limitations

causing high

delay when data

is transmitted.

- Has no

rerouting

mechanism in

case of

congestion

- Proposed

wireless router

has extra

computational

time to decide

which route to

use in mesh

network.

- Only use

wireless

transmission.

- Covers fiber

and wireless

transmissions.

The Real

Implemen

tation of

NDN

Forwardi

ng

Strategy

On

Android

Smartpho

ne, 2016

[94]

- Proposed a

wireless

communication

prototype by

using

Raspberry Pi to

communicate

with Android

smartphones.

The Raspberry

Pi is installed

with NDN

routing

mechanism

called NFD.

- Raspberry Pi

is

reconfigurable

and scalable

- The kernel is

open source

which can be

used to write

and execute

custom

algorithms.

- Raspberry Pi

has low

performance

due to its

hardware

limitations

- The routing

algorithm is

based on

shortest path,

hence, it does

not reroute in

case of

congested path.

- Raspberry Pi 2

has lower

specifications.

- NDN is not

reconfigurable.

- Proposed FiWi

router has

higher

specifications.

- Proposed FiWi

router is freely

reconfigurable.

54

Title Description Advantages Disadvantages Differences

Embedded system-based

Developing

Small Size

Low-Cost

Software-

Defined

Networking

Switch

Using

Raspberry

Pi, 2018

[95]

- Has proposed

a small size,

low cost and

portable SDN

switch testbed

using

Raspberry Pi.

Then, four

laptops are

connected to

the SDN

switch as

client,

POX/RYU

controller,

and the other

two laptops

act as the

servers.

- Space-friendly

- Scalable

- Limited

hardware

specifications

- OpenFlow-

based

Raspberry Pi

router is not

freely

reconfigurable.

- Proposed FiWi

router is freely

reconfigurable.

55

2.5 Summary

In conclusion, FiWi is a technology that combines optical and wireless

communication. It is widely used in current communication system due to its

robustness and mobility. Despite it still has plenty rooms for improvements. Hence,

many testbeds have been proposed by researchers to study numerous issues. Testbed

is an ideal approach to test a setup of equipment in order to test or enhance current

technology or as a proof-of-concept. There are also various architecture of testbeds

which are fiber, wireless and FiWi. From the literature review, it can be concluded

that FiWi testbeds can be implemented from a lab-scale testbed to an industrial-scale

testbed which is summarized in Table 2.3.

To the best of our knowledge, routers are installed at the backhaul of FiWi network.

Hence, we further scope down our literature review on router testbeds which include

software-based routers, commercial routers and embedded system-based routers

which have been summarized in Figure 2.4. From the literature review, it can be

concluded that most authors were using software-based routers as their testbeds

because these routers are reconfigurable, customizable, flexible, cost-efficient and

able to produce high performance results. However, there are no hardware involved in

their work, hence, the results produced were not including non-linear affects such as

noises and fluctuations. Meanwhile, commercial routers are able to produce accurate

and high-performance results. However, most of these routers are not reconfigurable,

not cost-efficient and not space friendly. Therefore, embedded-system-based routers

were used as the testbed due to their open source kernel, reconfigurability, scalability,

space-friendly and cost-efficient. Due to their limited hardware specifications,

embedded system-based routers are not able to produce as high performance as

software-based routers and commercial routers. To the best of our knowledge,

embedded system-based routers are the best choice in order to build a testbed as the

proof-of-concept of a fundamental of a technology or to enhance the current

technology. Compared to other embedded system hardware, Raspberry Pi 3B+ used

in this project has socket module that enables data communication between hardwares.

It is simpler, more cost-efficient, space friendly and durable compared to others such

as FPGA. Thus, development of reprogrammable and fast reconfigurable lab-scale

FiWi testbed that supports the integration of fiber optic and wireless for research and

56

educational purposes is feasible. Furthermore, due to its simplicity, Raspberry Pi used

in this project able to make the testbed scalable to more than one traffics and flexible

to different topologies such as Fi-WiFi and Wi-FiWi. Therefore, we have come to our

conclusion that Raspberry Pi as the main embedded system hardware is the best choice

to be our testbed in FiWi network.

Table 2.3 Overall summary of testbed architecture in FiWi

Testbed Architecture in FiWi

Hardware used Advantages Disadvantages

Industrial grade

hardware [2, 62-66]

- High performance and

accurate results

- Support long distance

transmission

- Not reconfigurable and not

fully reprogrammable

- Not cost-efficient

USRP [21, 67] - Reconfigurable and

reprogrammable

- Flexible and scalable

- Space friendly

- Not cost-efficient

57

Table 2.4 Overall summary of router testbed

Router type Advantages Disadvantages

Software-based [68,

69, 71, 73-75, 78,

79]

- Freely reprogrammable

- Flexible

- Customizable

- High performance

- Cost-efficient

- The parameters are based on

assumptions

- Not involved non-linear

effects

Commercial-based

[82-86]

- High performance and

accurate results

- Support many setups and

topologies

- Have better securities

- Not reprogrammable and

reconfigurable

- Not cost-efficient

Embedded system-

based

1) FPGA/netFPGA [87-89]:

- Reprogrammable and

reconfigurable

- High performance

2) Banana Pi [90, 91]:

- Has more than 1 Ethernet

port

- Has built-in algorithm

3) Raspberry Pi [93-95]:

- Reprogrammable and

reconfigurable

- Simple, scalable and flexible

- Space-friendly and portable

- Cost-efficient

1) FPGA/netFPGA:

- Complex and complicated in

terms of programming and

setup

- Not fast integration

- Not cost-efficient

2) Banana Pi:

- Can cause serious problem to

the network [92]

- Built-in algorithm not

reconfigurable

3) Raspberry Pi:

- Limited performance (RAM,

Ethernet performance)

58

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter proposes an embedded system-based FiWi testbed using Raspberry Pi

3B+ that is able to perform various experiments and testings in point-to-point

communication. The proposed FiWi testbed consists of four routers that are connected

in tree topology. This topology is chosen because it is a typical topology for FiWi

network [1, 7]. However, the topology of the testbed can be varied as desired. Each

router consists integration of four Raspberry Pi 3B+ and switches. Raspberry Pi 3B+

is chosen because it is user friendly especially for beginners. It is also cost efficient

making it more affordable. This makes it an ideal choice as an educational module

with low power consumption and fast implementation.

Overview of the FiWi testbed such as testbed topology, router architecture, network

environment and default system parameters is explained in Section 3.2. The hardware

used for this testbed are listed and discussed in Section 3.3. Section 3.4 explains on

the testbed programming environment in terms of flowchart of the system, testbed

scalability and fast integration. The design parameters and performance parameters

are discussed in Section 3.5. Finally, Section 3.6 summarizes this chapter.

In order to get better understanding on the flow of this chapter, the research flow in

Figure 3.1 is referred. This chapter begins with a description of testbed topology and

router architecture. Then, it continues with the description on the hardware used for

the testbed such as Raspberry Pi 3B+, Ethernet switches, Fiber Media Converter

(FMC) and optical fiber. Next, this chapter discusses about the network environment

of the testbed, ie., the traffic of data in terms of data size. Finally, the parameters for

the input and output of the testbed is deliberated.

59

1. Determine the design

of the testbed and

topology

2. Study the on the

hardware specifications

and setup for:

• Raspberry Pi 3B+

• Optical fiber

• Fiber Media

Converter

• Ethernet Switch

3. Program basic

transmit and receive

using socket module in

Python programming

language for all routers

4. Identify the input and

output of the testbed.

The inputs are:

• Data size

• End-to-end delay

The outputs are:

• End-to-end delay

• Throughput

Figure 3.1 Research flow

60

Figure 3.2 shows a flowchart that reflects the overview of technical development of

the proposed testbed. Firstly, after the proposed routers are connected with one another

in FiWi architecture, a packet is sent from one client to another client to observe its

reliability. If the client does not receive the packet, then, an additional processing delay

is increased in the proposed router. This process is repeated until the clients are able

to receive the packet without fail. The value of additional processing delay is further

discussed in Section 3.2.3. Afterwards, the performance of the proposed router testbed

is tested in point-to-point wireless network, fiber network and FiWi network in terms

of throughput, end-to-end delay and jitter in order to validate its correctness and

comply with the current communication standards. After it is validated, a stress test is

done by sending two traffics at a time to test the scalability of the proposed router

testbed. Then, the topology is change to Fi-WiFi and Wi-FiWi in order to test its

flexibility and stability.

Start

Connect all the

routers and clients

Send data from one

client to another

The client receives

the data?

Increase

additional

processing delay

Performance test in

wireless network, fiber

network, and FiWi network

Stress test in

FiWi network

Flexibility and

stability test

End

NO

YES

Figure 3.2 Research flowchart

61

3.2 Proposed Fiber-Wireless Testbed

3.2.1 Router Architecture

This section explains on the proposed router architecture of the testbed. The proposed

router architecture consists of four Raspberry Pi 3B+; one Header Pi and three

Forwarding Pi which are then connected with two Ethernet switches as shown in

Figure 3.3. The Header Pi is to identify the final destination of the data desired by the

user. Whereas, the Forwarding Pis are to forward the data to desired destination.

Ethernet Switch 1 is to represent the internal circuit of router, while Ethernet Switch

2 is to represent the external connection between router and other routers. Each of the

Raspberry Pi in the router has portable Liquid Crystal Display (LCD) screen to

monitor the destination of data and to make sure that the routing mechanism is correct.

These Raspberry Pis are connected to each other via CAT5e Ethernet cable through

Ethernet switches. CAT5e Ethernet cable is used because it supports Gigabit Ethernet,

therefore, it is compatible with Raspberry Pi 3B+ Ethernet port which also has Gigabit

bandwidth.

Figure 3.3 Basic router architecture

Header

Pi

Forwarding

Pi A

Forwarding

Pi C

Forwarding

Pi B

Ethernet

Switch 1

Ethernet

Switch 2

Incoming data from other

routers and client

Outgoing data to other

routers and client

CAT5e

CAT5e

CAT5e
CAT5e Client Router

62

In order to make the router supports wireless transmission, an extra component is

added to the architecture which is the AP as shown in Figure 3.4. The AP acts as the

wireless transmitter component and antennae for the router.

3.2.2 Traffic Modelling

This section discusses on the internal process of a router of this testbed. The flow of

data represented by the dotted arrow in Figure 3.5. When a client sends a packet of

data to the destination, a pre-label is added to the payload of the packet to indicate

where the data should end. The client sends the data to Header Pi. Then, the Header

Pi checks the label to know the beginning and end of data. After the Header Pi has

identified the destination of the data, it replaces the old label with a new label onto the

payload and then broadcast the data to each Forwarding Pis. Each of the Forwarding

Pi has its own unique label because each identity label corresponds to one destination

only. When the Forwarding Pi receives data from Header Pi, it will check the label on

the payload of the packet with its own identity label. If both labels are the same, the

Forwarding Pi will continue to forward the data to desired destination set by the client.

Figure 3.4 Basic fiber-wireless router architecture

Header

Pi

Forwarding

Pi A

Forwarding

Pi C

Forwarding

Pi B

Ethernet

Switch 1

Ethernet

Switch 2

Incoming data from other

routers and client

Outgoing data to other

routers and client

CAT5e

CAT5e

CAT5e
CAT5e

AP

CAT5e

Client
Router

63

Otherwise, if both labels are not the same, the Forwarding Pi turns the data to zero and

drops the packet. Figure 3.5 illustrates how the data is processed in the router.

For analytics purposes, the maximum data size generated is 1448 bytes because it is

the default maximum size of a packet set by Python in Raspberry Pi. The 1448 bytes

of data includes 3 bytes reserved for the labels. The minimum data size transmitted is

100 bytes because according to Brown [96], it is the most reliable data size to achieve

0% packet loss in a transmission. Then, the data transmitted will be increased every

100 bytes each time until it reaches 1445 bytes which is the maximum data size for a

packet in socket module. Furthermore, the increment of 100 bytes will make the trend

of the graph clearer.

Figure 3.5 Data flow in a router

CAT 5e

Flow of data

Client Header

Pi

Forwarding Pi

A

Forwarding Pi

B

Forwarding

Pi C

Ethernet

Switch 1

Ethernet

Switch 2

100 (label) + data
101 (label) + data

111 (label) + data

Data = 0

Data = 0

Client sends data Header Pi checks

the label and

broadcast the data

Forwarding Pis

check the label to

forward the data

to other routers

64

3.2.3 Default System Parameter

In order to make sure that the data transmission is reliable with no packet loss, each of

the Raspberry Pis in the router needs an extra processing time. This extra processing

time can be added by importing another Python module called “time”. This module is

already inside the Python programming folder. Therefore, function call is used to call

for this module. By introducing extra processing time, the router has just enough time

to process the packets including label injecting, label checking and packet forwarding.

In this case, 80 ms is added to each Raspberry Pis of the router. This value is obtained

by several iterations in an experiment. 1445 bytes of data is sent from one client to

another client through their respective routers. An observation is done to check

whether the client receives the data or not. Initially, there is no additional processing

delay in the router. If the client does not receive the data, the delay of each Raspberry

Pi in the router is increased by 10 ms until the client receives the data. 10 ms is chosen

because through the experiment, it is the minimum amount of processing delay for 100

bytes of data to arrive at the client. Lesser than 10 ms, none of the data arrived at the

desired client. The default system parameter is summarized in Table 3.1.

Table 3.1 Summary of default system parameter

Default system parameter Value

Extra processing delay 80 ms

3.3 Raspberry Pi-based Fiber-Wireless Testbed

3.3.1 Hardware Setup

The testbed is setup in tree topology which consists of four routers as shown in Figure

3.6 because other than limited amount of Raspberry Pis, it is the minimum number of

routers to test the performance for all type of connections; fiber, wireless and Fi-Wi.

The connection between routers is by using Single Core/Angled Physical Contact

(SC/APC) fiber optic patch cord. Raspberry Pi only has one Ethernet port. Hence, a

FMC is needed as an adapter between Raspberry Pi and fiber optic. Figure 3.7 shows

the hardware setup for FiWi network environment that reflects block diagram in

Figure 3.6.

65

Figure 3.6 FiWi testbed block diagram

CAT5e cable

Fiber optic

Client B

FMC FMC

FMC FMC

Client A Client C

Client D

Router B Router C

Router D

Router A

Figure 3.7 FiWi testbed architecture

Router A

Router B

Router C

Router D

Client C

Client B

Client A

Client D

66

Then, the topology is expanded to fiber-wireless-fiber (Fi-WiFi) and wireless-fiber-

wireless (Wi-FiWi) as shown in Figure 3.8 and Figure 3.9 respectively because

compared to other topologies such as ring and mesh, we can test the performance and

the reliability of the proposed router after gone through a number of medium changes

from wireless to fiber and vice versa. Moreover, the purpose of these setups is to test

to scalability of the testbed.

CAT5e cable

Fiber optic

FMC FMC

FMC FMC

Client A

Client D

Router A

Router B

Router C

Router D

Figure 3.8 Fi-WiFi setup

FMC FMC

Client A

Client D

Router A Router B

Router C Router D

CAT5e cable

Fiber optic

Figure 3.9 Wi-FiWi setup

67

3.3.2 Raspberry Pi Router Connections

Figure 3.10 shows the connection between four Raspberry Pi 3B+ and two switches

to form a router. As mentioned in Section 3.2.1, Header Pi is to check and identify the

final destination based on the pre-label injected by the client. There are three

Forwarding Pis in this router because, in a typical router, each of the port will have a

unique IP address. Therefore, to emulate the real router, three Forwarding Pis are

needed because each of them have a unique static IP address. Ethernet Switch 1 is to

represent the internal connection of the routers, which means, the connection between

Header Pi and Forwarding Pis. While Ethernet Switch 2 is to represent the external

connection between router and other routers. Figure 3.11 shows the connection for

fiber-wireless router.

Figure 3.10 Raspberry Pi router connection

Header Pi
Forwarding Pi A

Forwarding Pi B

Forwarding Pi C

Ethernet

switch 1

CAT5e

Ethernet

switch 2

68

Figure 3.11 Raspberry Pi fiber-wireless router connection

3.3.3 Optical Fiber

Optical fiber used in this project is a single-mode fiber patch cord. The patch cord

length is fixed at 1 m. The insertion loss for this fiber optic ranges from 0.11 dB to

0.18 dB. The return loss ranges from 61.4 dB to 62.1 dB.

Header Pi

Forwarding Pi A

Forwarding Pi B

Forwarding Pi C

Ethernet

switches

CAT5e

Access Point

Figure 3.12 SC/APC to SC/APC fiber optic

69

3.3.4 Fiber Media Converter (FMC)

FMC is used as an adapter for Raspberry Pi to connect to the fiber optic. The supported

data rate is up to 100 Mbps. The FMC also supports 20 km transmission while

operating at 1310 nm wavelength for transmitting and receiving because it has

individual port for transmit and receive as shown in Figure 3.14.

3.3.5 Ethernet Switch

Ethernet switch is used to provide more ports because Raspberry Pi has only one

ethernet port. The ethernet switch has eight ports and it supports up to 100 Mbps of

bandwidth.

Figure 3.14 Ethernet switch

Figure 3.13 Fiber Media Converter

70

3.4 Raspberry Pi Fiber-Wireless Testbed Programming Environment

3.4.1 Transmit and Receive Flowchart

This section shows the flowchart of routing mechanism of this testbed for the client,

Header Pi and Forwarding Pi that have been explained in Section 3.2.2. Figure 3.15,

Figure 3.16 and Figure 3.17 show the flowchart for client, Header Pi and Forwarding

Pi respectively. The red boxes in Figure 3.15 and Figure 3.16 are the examples of

processes that take place in Figure 3.4. The flowchart shown in Figure 3.17 is only for

Forwarding Pi A because all Forwarding Pis has the exact same process but with

different labels.

Figure 3.15 Client flowchart

YES
NO

Start

Self_label =

400

Choose

destination

Router A

Received

label =

400?

Print data

 Type a data

Send

‘100’+ data

End

process?

Router B

Received

label =

400?

Print data

 Type a data

Send

‘200’+ data

End

process?

End

Router C

Received

label =

400?

Print data

 Type a data

Send

‘300’+ data

End

process?

YES YES
NO NO

NO
NO NO

YES YES

YES

71

Figure 3.16 Header Pi flowchart

Figure 3.17 Forwarding Pi A flowchart

Start

End

Received

label =

101?

Send

‘111’+ data

YES

End

process?

Data

= 0

YES

NO

NO

Start

End

Received

label =

100?

Send

‘101’+ data

YES

Received

label =

200?

Send

‘201’+ data

End

process?

YES

Received

label =

300?

Send

‘301’+ data

YES

Received

label =

444?

Send

‘400’+ data

YES

Data

= 0

NO

NO NO NO NO

YES

72

This testbed is connection-oriented communication which has three-way handshake

by using socket module in Python. In order to declare the communication is

connection-oriented, the program must include “s = socket.socket(socket.AF_INET,

socket.SOCK_STREAM)”. The variable “s” is to simplify the whole line and will be

easier to use later on in the program. Then, the first “socket” in “socket.socket” is the

function call from socket module in Python module, while the second one is the

function name. Next, “socket.AF_INET” means the communication is based on

Internet Protocol version 4 (IPv4). Finally, “socket.SOCK_STREAM” means the

protocol used is Transmission Control Protocol (TCP), which means it is connection-

oriented communication.

After this declaration, the program checks whether or not the router receives the data

or not by using “data = socket.recv(4096)”. In the program, “data” means the variable

where the received data is stored. “socket.recv” is module used to receive the data.

“4096” refers to 4096 bytes which is the buffer size for the incoming data. Once the

data is received, the program checks the first 3 bytes of the data to check the label in

“if-else” statements. In the “if-else” statement, if the label is the same with the label

of Header Pi or Forwarding Pi, the data is forwarded by using “socket.send(data)”.

Otherwise, the data turns to 0 by using “data = ‘0’”. The rest of the program is a

repetitive of “if-else” statement but with different label values.

3.4.2 Testbed scalability

One of the objectives of this project is to develop a scalable FiWi testbed. Scalability

means the ability for the testbed to adapt to a new architecture or arrangement easily

and its ability to expand the number of new components. In order to add or remove a

component in the FiWi testbed, minor changes need to be done to the testbed

arrangement. In this case, the testbed setup is changed to Fi-WiFi and Wi-FiWi to test

testbed’s scalability performance and to prove the router works in various setup.

Fi-WiFi is an architecture where the data travels from fiber medium to another fiber

medium via wireless medium as shown in Figure 3.10. When Client A sends a data to

Client D, the data is processed by Router A. Then, it is sent to Router B via fiber and

73

Router C wirelessly. Router C processes the data again and sends it to router D via

fiber optic. Finally, Router D processes the data and sends it to Client D. The process

for each router is the same as in Figure 3.15, Figure 3.16 and Figure 3.17. However,

simple changes to the program is needed in terms of label values so that the router can

perform routing mechanism for Fi-WiFi architecture in a correct manner. Each label

for Fi-WiFi must be unique from FiWi architecture and Wi-FiWi architecture to

prevent the router from misinterpret the destination of the data. For example, if the

Client A, Router A, Client B, Router B, Client C and Router C in FiWi setup as shown

in Figure 3.7 have self-labels of 100, 111, 200, 222, 300, and 333 respectively, then,

the self-label values for Client A, Router A, Client B, Router B, Client C, Router C,

Client D, and Router D in Fi-WiFi setup in Figure 3.8 must be different, such as 500,

501, 600, 601, 700, 701, 800, and 801 respectively. This is because the Fi-WiFi setup

is different from FiWi setup since Client D and Router D in FiWi setup has fiber

transmission only but not FiWi transmission. On the other hand, in Fi-WiFi includes

all the clients and routers to transmit from one client to other client. This method

applies to Wi-FiWi as well because it is also a different setup from FiWi and Fi-WiFi

setups. The summary of the process is summarized in Table 3.2.

Table 3.2 Summary of labels for FiWi, Fi-WiFi, Wi-FiWi

Topology

Labels

Client

A

Router

A

Client

B

Router

B

Client

C

Router

C

Client

D

Router

D

FiWi 100 111 200 222 300 333 400 444

Fi-WiFi 500 501 600 601 700 701 800 801

Wi-FiWi 502 504 602 604 702 704 802 804

3.4.3 Raspberry Pi Fiber-Wireless Testbed as an Educational Module

Proposed Raspberry Pi router specifications are presented in Appendix D. However,

this testbed is not only limited to research, but it is also a good platform for

academicians to teach engineering students about how routing in data communication

works. The teaching of communication often taught to the students using conventional

methods such as notes, textbooks and slides which require more effort and time for

the students to understand compared to hands-on experience on the testbed.

74

Using this testbed, students can learn data transmission in a typical FiWi architecture

from a client to another client. When the user sends a data through Ethernet cable, the

data needs to undergo medium conversions; electrical signals to optical signals and

electrical signals to wireless signals. At the fiber side of FiWi architecture, the data

undergo a conversion from electrical signals to optical signals because the travels from

Ethernet cable to fiber optic via FMC. The FMC has a circuit board to process and

translates the electrical signals to equivalent coded optical signals. A Light Emitting

Diode (LED) or laser can be used to generate the optical pulses. These pulses are

reflected to fiber optic medium by using lenses, hence, the data is travels through the

fiber optic. Once the data arrived at the other FMC, the data is converted back from

light signals to electrical signals by using photodiode.

At the wireless side, when the router forwards the data wirelessly, the AP converts the

data from electrical signals to electromagnetic signals. These data undergo a

modulation called Frequency Modulation (FM) or Frequency Shift Keying (FSK)

modulation. The digital data is translated based on the frequency of the waves. Then,

at the other end, the AP receives the data wirelessly and demodulates it back to

electrical signal. Thus, the client receives the data via Ethernet cable.

3.5 Testbed Parameters

The testbed’s design parameters and performance parameters are discussed in this

section.

3.5.1 Design Parameters

Design parameters are defined as the input for the FiWi testbed. There are two types

of design parameters that have been identified; data size and the end-to-end delay.

The data size is the length of data in terms of bytes (B). The data size can be varied

easily by the user at the client side. In this experiment, the increment of the transmitted

data size is 100 bytes for each transmission. The data size affects the end-to-end delay

75

where greater data size may result in greater end-to-end delay. The end-to-end delay

is used to study the throughput and jitter of the testbed.

Table 3.3 Design parameters

Description Units

Data size B

End-to-end delay s

3.5.2 Performance Parameters

Performance parameters are the output of the FiWi testbed. These outputs indicate the

FiWi performance. There are three performance parameters for this testbed; end-to-

end delay, throughput and jitter.

End-to-end delay is the time taken when the user sends the data from a client to a

client. Throughput is the overall performance of the testbed in bit per second (bps)

when the data size in bit (b) is divided by end-to-end delay in second (s). Finally, jitter

is defined as the variation of end-to-end delay in second (s). The lower the jitter, the

better the performance of the testbed.

Table 3.4 Performance parameters

Description Units

Delay s

Throughput bps

Jitter s

76

3.6 Summary

This chapter describes the proposed FiWi testbed by using Raspberry Pi 3B+ that

supports data transmission for research and education purposes. The architecture of

this testbed can be scaled easily to Fi-WiFi and Wi-FiWi without any tedious hardware

rearrangement. The routing mechanism for FiWi, Fi-WiFi and Wi-FiWi can be

achieved by changing the label for each client, Header Pi and Forwarding Pi in Python.

The testbed is not only easy to input the parameters but also fast to obtain the result.

This chapter also explains on the design parameters such as data size and end-to-end

delay. The performance parameters such as delay, throughput and jitter are also

discussed in this chapter. The next chapter will elaborate on the results and discussion

for FiWi, Fi-WiFi, Wi-FiWi.

77

CHAPTER 4

RESULTS AND PERFORMANCE EVALUATION

4.1 Introduction

This chapter discusses on the performance evaluation of proposed FiWi testbed. In

Section 4.2, the testbed’s performance such as validation of the proposed testbed with

off-the-shelf router is reviewed. The validation is done in terms of end-to-end delay

of the data transmission of the testbed, as well as the throughput and the jitter. The

performance of the testbed covers for wireless transmission, fiber transmission and

FiWi transmission. This section also presents the outcome of performance evaluation

for FiWi stress test in terms of end-to-end delay, throughput and jitter. Whereas for

scalability performance test, this section presents the performance of Fi-WiFi and Wi-

FiWi. Finally, Section 4.7 presents the summary of this chapter

4.2 Wireless Transmission Performance Test

For this test, Raspberry Pi client is used to send a packet to another client via a pair of

wireless routers. The initial data size transmitted is at 100 bytes. Then, the data size is

increased by 100 bytes each time up to 1445 bytes. As mentioned in Chapter 3, 100

bytes is chosen to achieve maximum reliability [96]. The point-to-point transmitting

and receiving experiments are done for upstream and downstream transmissions. The

performance of the experiment in terms of end-to-end delay, throughput and jitter are

plotted on the graph.

The proposed router is compared with off-the-shelf router to check its functionality

and to observe its correctness. A pair of off-the-shelf routers used in this experiment

are D-LINK DAP1360 because they can intercommunicate directly via MAC address

by using Bridge configuration [97]. The setup for the off-the-shelves router is the same

as the proposed testbed, which is point-to-point. The upstream and downstream

transmissions are done by using two computers. One computer sends the data in the

form of a file from one computer to another computer. The initial data size for the file

is 10 kB. The data size is increased by 10 kB each time until 100 kB. It is increased

78

until 100 kB because the maximum bandwidth of the off-the-shelf router is not more

than 1 Mbps [97]. The maximum bandwidth of the off-the-shelf router obtained

through numerous experiments are consistent to 700 kbps. This is deemed acceptable

as typical router has a max of 60% to 70% of its throughput in datasheet due to its

header and congestion algorithm [98]. Then, the throughput of the experiment for

upstream and downstream are captured using Wireshark.

4.2.1 Throughput

Figure 4.1 and Figure 4.2 show the downstream and upstream graphs of throughput

for the proposed router and off-the-shelf router respectively. Based on Figure 4.1 the

trend of the off-the-shelf router for upstream is increasing as the offered load increases

from 0 bps at 0% offered load to 700 kbps at 100% offered load. Meanwhile, the

throughput of the proposed router is also increasing as the offered load increases from

0 bps at 0% offered load to 677 kbps offered load. Figure 4.2 shows that the throughput

of the off-the shelf-router for downstream is increasing as the offered load increases

from 0 bps at 0% offered load to 774 kbps at 100% offered load. Meanwhile, the

throughput for the proposed router also increases from 0 bps at 0% offered load to 752

kbps at 100% offered load. The throughput of the proposed router is scaled up to the

throughput of the off-the-shelf router to observe the trend of the graph. The results

show that the throughput of the proposed router has similar increasing trend with the

throughput of off-the-shelf router, hence proving that proposed router performance is

correct. For both Figure 4.1 and Figure 4.2, the off-the-shelf router has higher

capability than the proposed router. This is expected because the proposed router has

lower processing power than off-the-shelf router. Hence, it takes longer time to

forward the data. The throughput for the proposed router is calculated by using

Equation 4.1.

 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝑏𝑝𝑠) =
𝐷𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 (𝑏𝑖𝑡)−𝐷𝑎𝑡𝑎 𝑙𝑜𝑠𝑠 (𝑏𝑖𝑡)

𝐸𝑛𝑑−𝑡𝑜−𝑒𝑛𝑑 𝑑𝑒𝑙𝑎𝑦 (𝑠)
 (4.1)

For both downstream and upstream transmissions, off-the-shelf router is able to

transmit data up to 700 kbps and 774 kbps respectively at 100% offered with 1445

bytes of in each packets. But for the proposed router, one packet of 1445 bytes is able

79

to achieve up to 52.097 kbps for downstream transmission and 54.335 kbps for

upstream transmission. Hence, if the proposed router sends as many packets as the off-

the-shelf router, the data that can be transmitted in the proposed router is vertically

scaled up by factor of 13.436 (
700 𝑘𝑏𝑝𝑠

52.097 𝑘𝑏𝑝𝑠
= 13.436) for downstream and 12.883 for

upstream (
774 𝑘𝑏𝑝𝑠

54.335 𝑘𝑏𝑝𝑠
= 12.883). Vertical scaling is a method to translate a graph

without losing the original properties where all y-values in the graph are multiplied by

a specific factor. Therefore, for the proposed router, the throughput for each offered

load is multiplied with 13.436 and 12.883 for downstream and upstream respectively.

 It is expected that the throughput for the proposed router is lower than the off-the-

shelf router because off-the-shelf router has higher specifications, processing power

and price. The differences in bandwidth values for both off-the-shelf router and

proposed router are not of our concern because the one of the objectives of this project

is to create a simple and fast reconfigurable router testbed that supports FiWi

transmission and able to serve as FiWi educational module as stated in Appendix D.

Figure 4.1 Downstream throughput

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p

u
t

(k
b

p
s)

Offered load (%)

Proposed router

Off-the-shelf

router

80

Figure 4.2 Upstream throughput

4.2.2 End-to-end delay

This section explains the end-to-end delay of the wireless router. End-to-end delay is

the delay between a client to another client via a pair of proposed routers. From the

graph in Figure 4.3, the end-to-end delay increases as the data size increases for both

upstream and downstream transmissions. This is as expected because larger data size

requires more processing time. Based on Figure 4.3, the downstream end-to-end delay

starts from 0.13 s at 100 bytes to 0.19 s at 1445 bytes. Whereas upstream end-to-end

delay starts from 0.14 s at 100 bytes to 0.19 s at 1445 bytes. For both graphs, the end-

to-end delay increases because the proposed router needs more time to process as the

data size getting bigger. In Figure 4.3, the end-to-end delay at 1445 bytes has sudden

increase from 1400 bytes. This is due to the proposed router that has reached its

processing limit due to hardware limitations. Upstream transmission has higher end-

to-end delay compared to downstream transmission. However, there are not much

difference between downstream and upstream delay which is only about 8 ms. Despite

this difference, the end-to-end delay is acceptable due to the trend of both graphs

satisfying the behaviour of the trend of end-to-end delay in IEEE 802.15.4 routing

scheme [99] where it increases as the data size increases. Hence, it can be concluded

that, the proposed router is suitable to be a wireless router for research and educational

purposes because the behaviour of the graph is satisfying the nature of typical router.

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p

u
t

(k
b

p
s)

Offered load (%)

Proposed router

Off-the-shelf

router

81

Figure 4.3 End-to-end delay for wireless transmission

4.2.3 Jitter

The downstream and upstream jitter graphs for the wireless router are shown in Figure

4.4 and Figure 4.5 respectively. The purpose of analysing the jitter of the proposed

router is to check whether the jitter values are in the acceptable range. Jitter is defined

as the variation in time between packets arriving, caused by network congestion,

timing drift, or route changes. The lower the jitter, the better the performance of the

system can be. The jitter, J is calculated in Equation 4.2. In which, Packet Delay

Variation (PDV) is achieved by using Equation 4.3. According to [100], Di,j is the time

of a transmission i, in transmitter j and Np is the total number of receiving packets.

Dave is the average transmission time of i in transmitter j that is achieved by using

Equation 4.4.

 𝐽𝑖𝑡𝑡𝑒𝑟, 𝐽 (𝑠) = √𝑃𝐷𝑉 (4.2)

 𝑃𝐷𝑉 =
∑ (𝐷𝑖,𝑗− 𝐷𝑎𝑣𝑒)2𝑁𝑝

𝑐=1

𝑁𝑝
 (4.3)

 𝐷
𝑎𝑣𝑒=

∑ 𝐷𝑖,𝑗
𝑁𝑝
𝑐=1

𝑁𝑝

 (4.4)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1445

E
n
d

-t
o

-e
n
d

 d
el

ay
 (

s)

Transmitted data (bytes)

Upstream

Downstream

82

In Figure 4.4 and Figure 4.5, there is no observable trend of graph can be monitored

unlike end-to-end delay and throughput. This is because the jitter relates to the

variation in the end-to-end delay. Therefore, the jitter varies throughout the

transmitted data. In Figure 4.5, the jitter varies from 0.929 ms to 9.80 ms. The high

jitter at 1445 bytes is caused by the high end-to-end delay as shown in Figure 4.3.

Meanwhile the jitter graph in Figure 4.6, the values vary from 1.57 ms to 6.73 ms.

Based on Figure 4.6, the highest jitter is shown at 1445 bytes. This is due to the end-

to-end delay graph in Figure 4.4, 1445 bytes gives the highest end-to-end delay. In this

wireless transmission, it can be concluded that the jitter relates closely with the delay

in which when the delay is high. Moreover, despite there is no observable trend of

jitter graphs, the jitter values are still within the acceptable range because according

to Cisco in [101], the acceptable jitter values must be below 30 ms. Hence, proving

that the proposed testbed is suitable to be used as a wireless router.

Figure 4.4 Proposed router downstream jitter

0

2

4

6

8

10

12

Ji
tt

er
, J

 (
m

s)

Transmitted data (bytes)

83

Figure 4.5 Proposed router upstream jitter

4.3 Fiber Transmission Performance Test

The setup for this test is similar to the wireless performance test but instead of using

wireless transmission, the data are transmitted by using fiber. The throughput of the

testbed is validated with industrial grade router. The data size for the industrial grade

router is initially set at 10 MB and it is increased by 10 MB for each transmission until

it reaches 100 MB. The limit is set at 100 MB because 100 MB is a reasonable

maximum data size for 1 Gb data size considering the total bandwidth needs to include

the packet headers as well. The throughput of the transmission is recorded by using

Wireshark.

4.3.1 Throughput

Figure 4.6 and Figure 4.7 show throughput graphs for downstream and upstream

transmissions respectively between industrial grade router and the proposed router.

For a packet of 1445 bytes, the throughput of proposed router is 92 kbps and 91 kbps

for downstream and upstream respectively. Then, the scaling method used same as in

wireless transmission. The graphs show that the throughput of proposed router have

similar increasing trends with industrial grade routers as the offered load increases.

Hence, the performance of the proposed router is validated. In Figure 4.6, the trends

of the throughput for proposed router and industrial grade router for downstream are

increasing as the offered load increases. For proposed router, the throughput increases

from 0 bps at 0% offered load to 767 Mbps at 100% offered load. Meanwhile, the

0

1

2

3

4

5

6

7

8

100 200 300 400 500 600 700 800 900 100011001200130014001445

Ji
tt

er
,
J

(m
s)

Transmitted data (bytes)

84

throughput for industrial grade router increases from 0 bps at 0% offered load to 540

Mbps at 80% offered load. However, at 50% of offered load, the throughput of the

industrial grade router is increasing at slower rate because it approaches the limit of

the bandwidth. Then, at 80% of the offered load, the throughput is stagnant until 100%

of offered load. It is due to the bandwidth has been fully utilized.

Meanwhile in Figure 4.7, the trends of the throughput for both proposed router and

industrial grade router for upstream are also increasing as the offered load increases.

In Figure 4.7, the throughput of proposed router increases from 0 bps at 0% offered

load to 785 Mbps at 100% offered load. Meanwhile, the throughput for industrial grade

router increases from 0 bps at 0% offered load to 480 Mbps at 60% because the

throughput of the industrial grade router reaches its limit at 60% of the offered load.

The reason of why the proposed router’s throughput keeps increasing for both graphs

is because there is no QoS in the proposed router. On the other hand, the industrial

grade router has QoS to prevent congestions. Hence, it limits the maximum throughput

to reserve the bandwidth in case of flooding. From the validation, we can conclude

that the trends of the proposed router are correct. It is expected that the industrial grade

router has higher throughput before 60% of offered load because it has greater

specifications and data processing power compared to proposed router.

Figure 4.6 Downstream throughput

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p

u
t

(M
b

p
s)

Offered load (%)

Proposed router

Industrial grade router

85

Figure 4.7 Upstream throughput

4.3.2 End-to-end delay

This section explains the end-to-end delay of the proposed router in fiber transmission.

Based on the graph in Figure 4.8, the end-to-end delays are increasing as the data size

increases for downstream and upstream transmissions. This is due to more time taken

to process the data when the data are transmitted. There is not much change in delay

for both downstream and upstream. This is due to the bandwidth in fiber is large, but

the transmitted data size is small. In Figure 4.8, the minimum downstream end-to-end

delay is 0.122 s at 100 bytes, while the maximum end-to-end delay is 0.126 s at 1445

bytes. As for upstream transmission, the minimum end-to-end delay is 0.123 s at 100

bytes, while the maximum end-to-end delay is 0.126 s at 1445 bytes. The end-to-end

delay is expected to be higher than a typical fiber-supported router like industrial grade

router because of hardware limitation. Furthermore, one of the objectives of this thesis

is to create a reconfigurable router testbed that supports fiber transmission for

educational module.

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p

u
t

(M
b

p
s)

Offered load (%)

Proposed router

Industrial grade router

86

Figure 4.8 End-to-end delay for fiber transmissions

4.3.3 Jitter

The jitter for downstream and upstream transmissions are calculated using Equation

4.2, Equation 4.3 and Equation 4.4. The jitter graphs for downstream and upstream are

shown in Figure 4.9 and Figure 4.10 respectively. In Figure 4.9 and Figure 4.10, there

is no observable trend like end-to-end delay and throughput. This is because the jitter

relates to the variation of end-to-end delay for each transmitted data. If the variation

is high, then the jitter is high and otherwise. For downstream jitter ranges from 0.04

ms to 0.38 ms. The jitter reaches its peak at 0.38 ms which is when 1200 bytes is

transmitted. Whereas, the jitter for upstream transmission ranges from 0.12 ms to 0.49

ms. The jitter reaches its peak for upstream transmission is when 1445 bytes is

transmitted which is at 0.49 ms. Based on these values, it can be concluded that the

transmission for fiber is stable because the jitter values are very small due to large

bandwidth and minimal noise in fiber. The jitter values are below 30 ms which is

within acceptable range [101]. This proves that the testbed is suitable to be used as

fiber-based router.

0.12

0.121

0.122

0.123

0.124

0.125

0.126

0.127

E
n
d

-t
o

-e
n
d

 d
el

ay
 (

s)

Transmitted data (bytes)

Downstream

Upstream

87

Figure 4.9 Downstream jitter

Figure 4.10 Upstream jitter

4.4 Fiber-Wireless Transmission Performance Test

The setup for this test is the combination of fiber and wireless transmission as shown

in Figure 3.7 where the data is sent from Client A to Client C. The data size for this

test is the same as the wireless performance test and fiber performance test. The

throughput of the FiWi proposed router is validated with industrial grade router. The

bandwidth of the industrial grade router is set to 1 Gbps. However, the initial data size

is set to 10 kB and increased by 10 kB for each transmission until it reaches 100 kB.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Ji
tt

er
,
J

(m
s)

Transmitted data (bytes)

0

0.1

0.2

0.3

0.4

0.5

0.6

Ji
tt

er
,
J

(m
s)

Transmitted data (bytes)

88

This is because the industrial grade router is connected to an access point to match its

setup with the proposed router setup. Therefore, the actual bandwidth is 1 Mbps.

4.4.1 Throughput

Figure 4.11 and Figure 4.12 show the throughput graphs for downstream and upstream

transmission respectively. The purpose of this validation is to observe the correctness

of the proposed router. For a packet of 1445 bytes, the throughput of proposed router

is 79.8 kbps and 93 kbps for downstream and upstream respectively. Then, the scaling

method used same as in wireless transmission. Based on the graphs, the throughput of

the proposed router has similar increasing trend as the industrial grade router. This

shows that the transmission of the proposed router is correct. Based on Figure 4.11,

the throughput for proposed router increases from 0 bps at 0% offered load to 719 kbps

at 100% offered load. Meanwhile, the throughput of industrial grade router increases

from 0 bps at 0% offered load to 697 kbps at 90%. However, the throughput of the

industrial grade router decreases at 100% offered load. Based on Figure 4.12, the

throughput of the proposed router increases as the offered load increases from 0 bps

at 0% offered load to 770.351 kbps at 100% offered load. Meanwhile, the throughput

for industrial grade router is also increasing from 0 bps at 0% to 774 kbps at 100%

offered load.

In Figure 4.11, the throughput of the industrial grade router decreases at 100% offered

load because the router has reached its bandwidth limit. Meanwhile, the throughput of

the proposed router is keep increasing. As mention earlier, this is due to the proposed

router does not have QoS, whereas, the industrial grade router has QoS algorithm to

limit the maximum throughput. Overall, the throughput of the proposed router is lesser

than industrial grade router due to its limited specs, bandwidth and processing power.

This is expected because the proposed router is built for lab-scale experiment, but, the

industrial grade router is meant for industrial purposes. From the graph, we can

conclude that the trend of the proposed router is correct. Unlike individual throughput

of fiber and wireless, the throughput of FiWi has a bottleneck at the wireless side of

the setup. Hence, the throughput is limited at around 700 kbps.

89

Figure 4.11 Downstream throughput

Figure 4.12 Upstream throughput

4.4.2 End-to-end delay

Figure 4.13 show the end-to-end delay for downstream and upstream transmissions in

FiWi. The graphs show increasing trend of end-to-end delay for both downstream and

upstream transmissions due to increase in data size. Based on Figure 4.13, the

minimum downstream end-to-end delay is 0.125 s at 100 bytes, while its maximum is

0.145 s at 1445 bytes. Whereas the minimum upstream end-to-end delay is 0.122 s at

100 bytes, while its maximum is 0.124 s at 1445 bytes.

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p

u
t

(k
b

p
s)

Offered load (%)

Proposed router

Industrial grade router

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p

u
t

(k
b

p
s)

Offered load (%)

Proposed router

Industrial grade router

90

The end-to-end delay for both downstream and upstream increases because as the data

size increases, the router takes longer time to process the data. The reason why there

are not many differences in the graphs is because the data size is very small for a large

bandwidth of fiber which is 1 Gbps. Furthermore, the data is transmitted by using light

pulses in fiber. Hence, it transmits faster compared to electrical pulses in copper. For

example, during downstream transmission, the end-to-end delay at 100 bytes is 0.1245

s, whereas at 200 bytes the end-to-end delay is 0.1249 s. The overall end-to-end delay

for downstream is higher than upstream as expected in [102]. However, even though

the end-to-end delay of the proposed testbed is higher, but, its increasing trend

complies with the trend in IEEE 802.15.4 routing scheme [99]. It is expected to be

higher than the standard because of hardware limitation. Furthermore, one of the

objectives of this thesis is to create a reconfigurable router testbed that supports fiber-

wireless transmission for educational module.

Figure 4.13 End-to-end delay for FiWi transmission

4.4.3 Jitter

Figure 4.14 and Figure 4.15 show the graphs for downstream and upstream jitter

respectively. In Figure 4.14, the trend of the jitter is increasing as the data size

increases from 0 s at 0 bytes to 3.96 ms at 900 bytes because as the data size increases,

the delay variation between transmitted data increases, hence the jitter increases.

However, the trend of the graph is not consistent from 1000 bytes to 1445 bytes

0.110

0.115

0.120

0.125

0.130

0.135

0.140

0.145

0.150

D
o

w
n
st

re
am

 e
n
d

-t
o

-e
n
d

 d
el

ay
 (

s)

Transmitted data (bytes)

Downstream

Upstream

91

because the delay variations between transmitted data are not consistent. For example,

the jitter from 900 bytes to 1000 bytes decreases because the delay variation from 1000

bytes is smaller than 900 bytes. Whereas, the delay variation from 1000 bytes to 1100

bytes increases, hence the jitter increases. Based on the graph, the jitter values are

having a huge gap from 1300 bytes to 1445 bytes ranging from 2.49 ms to 8.25 ms

because the proposed router is reaching its limit, hence making the data transmission

unstable which causes the delay variation to be high. Based on Figure 4.15, the jitter

graph for upstream transmission varies from 0 s at 0 bytes to 0.108 ms at 800 bytes.

This is due to the upstream transmission is done right after the downstream

transmission. Therefore, the hardware became heated causing the transmission not

stable. Hence, there is the inconsistency in the jitter graph for upstream transmission.

Despite there not observable trend in both graphs, the jitter values are acceptable

because according to Cisco, the jitter values must be below 30 ms.

Figure 4.14 Downstream jitter

0

5

10

15

20

25

30

35

Ji
tt

er
,
J

(m
s)

Transmitted data (bytes)

Cisco’s standard

92

Figure 4.15 Upstream jitter

4.5 Fiber-Wireless Stress Test

Unlike FiWi performance test, there is no need to scale up the throughput of this test

because it is already proven that the proposed router is suitable to be a FiWi router.

Hence, in this section, the limit of the FiWi testbed is tested by transmitting two traffics

simultaneously from one router to another. This experiment is done by connecting two

clients for each proposed router. This section presents the throughput, end-to-end

delay and jitter for downstream and upstream transmission. The purpose of this section

is to analyse the performance of the proposed router when there are two traffics

transmitted simultaneously.

4.5.1 Throughput

Figure 4.16 and Figure 4.17 show the throughput graphs for downstream and upstream

transmissions respectively. Based on Figure 4.16, the trend of the throughput graph is

increasing as the data size increases. The minimum throughput is 3.210 kbps at 100

bytes, while the maximum throughput is 40.047 kbps at 1400 bytes. The throughput

decreases at 1445 bytes from 40 kbps to 39.5 kbps because it is the limit of the router.

Compared with the throughput of a single traffic, the throughput of two traffics is half

of the throughput of single traffics. The reason of this occurrence is two traffics

causing the proposed router to process the data twice. For example, at 100 bytes in

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Ji
tt

er
,
J

(m
s)

Transmitted data (bytes)

93

downstream transmission, the throughput for a single traffic is 6.42 kbps whereas the

throughput for two traffics is 3.21 kbps. This statement is supported by Xu et al. [103]

where more traffics contribute to less throughput.

Figure 4.16 Downstream throughput

Figure 4.17 Upstream throughput

4.5.2 End-to-end delay

Figure 4.18 and Figure 4.19 show the downstream and upstream end-to-end delay

graphs respectively. Based on Figure 4.18, the trend of the graph is increasing from

0

10

20

30

40

50

60

70

80

90
T

h
ro

u
g
h
p

u
t

(k
b

p
s)

Transmitted data (bytes)

2 Traffics

1 Traffic

0

10

20

30

40

50

60

70

80

90

100

T
h
ro

u
g
h
p

u
t

(k
b

p
s)

Transmitted data (bytes)

2 Traffics

1 Traffic

94

0.249 s at 100 bytes to 0.293 s at 1445 bytes. The increasing trend of the graph is due

to increasing values of data size. At 1445 bytes, there is a sudden increase of end-to-

end delay. This is due to the proposed router is at its limit of processing two traffics

simultaneously. Theoretically, when number of traffics increases, the end-to-end delay

also increases [104]. Therefore, comparing the graph in Figure 4.19, the end-to-end

delay of two traffics is twice as big as single traffic. This is due to the proposed router

needs to process the data twice compared to a single traffic which the proposed router

processes the data only once. For example, the end-to-end delay at 1445 bytes for

single traffic and two traffics are 144.838 ms and 293.01 ms respectively.

Based on Figure 4.19, the upstream end-to-end delay graph increases from 243.863

ms at 100 bytes to 248.591 ms at 1445 bytes. Like downstream transmission, the end-

to-end delay for upstream transmission is twice as high as single traffic. This is due to

the proposed router needs to process the data twice compared to a single traffic. For

example, at 1445 bytes, the end-to-end delay for two traffics and single traffic are

248.591 ms and 124.296 ms respectively. Hence, we can conclude that even though

the trends of the graphs are looking constant, but, actually it is increasing as the data

increases. The constant trends of the graphs are due to the presence of fiber which

make the difference in end-to-end delay between two data such as 100 bytes and 200

bytes are not significant.

Figure 4.18 Downstream end-to-end delay

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
n
d

-t
o

-e
n
d

 d
el

ay
 (

s)

Transmitted data (bytes)

2 Traffics

1 Traffic

95

Figure 4.19 Upstream end-to-end delay

4.5.3 Jitter

Figure 4.20 and Figure 4.21 show the jitter for upstream and downstream

transmissions for two traffics. The purpose of this section is to check whether the jitter

values for two traffics are within acceptable range or not. Based on the graph in Figure

4.20, the jitter increases from 0.757 ms at 100 bytes to 7.91 ms at 900 bytes. Then, the

jitter starts to vary from 7.393 ms at 1000 bytes to 3.454 ms at 1300 bytes. The jitter

continues to increase from 3.454 ms at 1300 bytes to 11.22 ms at 1445 bytes. Based on

Figure 4.24, the jitter for upstream transmission varies from 18.49 µs at 1100 bytes to

0.217 ms at 800 bytes.

The jitter reaches its peak at 1445 bytes in Figure 4.20 because it is the limit of the

proposed router. Therefore, the delay variation between transmissions at this point is

very high. Whereas in Figure 4.21, the jitter varies and inconsistent due to the proposed

router becomes heated when running the routing for too long. Compared to single

traffic, two traffics have greater jitter because the proposed router needs to process the

data twice. Therefore, it takes longer time to process for each data causing the delay

variation for each data transmission to be higher. For example, at 1445 bytes, the

downstream jitter for single traffic is 4.35 ms, while the downstream jitter for two

traffics is 11.22 ms. As for upstream transmission, the jitter for single traffic is 0.06

ms at 1445 bytes, whereas the jitter for two traffics is 0.12 ms at 1445 bytes. Despite

0

0.05

0.1

0.15

0.2

0.25

0.3

E
n
d

-t
o

-e
n
d

 d
el

ay
 (

s)

Transmitted data (bytes)

2 Traffics

1 Traffic

96

having higher jitter compared to a single traffic, the jitter values for two traffics are

still within acceptable range. Hence, we can conclude that the testbed is scalable.

Figure 4.20 Downstream jitter

Figure 4.21 Upstream jitter

4.6 Scalability Performance Test

This section presents the performance for Fi-WiFi and Wi-FiWi in terms of end-to-

end delay and throughput. Unlike FiWi performance test, the throughput of both Fi-

WiFi and Wi-FiWi are not scaled up because it is proven the proposed router is suitable

to be FiWi router testbed. Hence, the purpose of this section is to analyse the scalability

performance and to compare which architecture makes the router works more stable.

0

2

4

6

8

10

12

Ji
tt

er
,
J

(m
s)

Transmitted data (bytes)

2 Traffics
1 Traffic

0.00

0.05

0.10

0.15

0.20

0.25

Ji
tt

er
,
J

(m
s)

Transmitted data (bytes)

2 Traffics

1 Traffic

97

4.6.1 Fiber-Wireless-Fiber Performance Test

Figure 4.22 shows the downstream and upstream throughput for Fi-WiFi network.

Based on Figure 4.22, the downstream throughput increases as the data size increases

from 2.626 kbps at 100 bytes to 22.403 kbps at 1445 bytes. Meanwhile, upstream

throughput graph is increasing up until 1100 bytes only. Then, the graph becomes

unstable from 1200 bytes to 1300 bytes. Then, the throughput continues to decrease

from 1400 bytes to 1455 bytes.

Even though the downstream throughput is increasing, but the gradient of the graph is

gradually decreasing starting at 700 bytes. Whereas the upstream throughput becomes

unstable at 1200 bytes to 1300 bytes because the proposed router is almost at its limit.

Furthermore, the instability of throughput at these points is because the gradient of the

graph of the upstream end-to-end delay suddenly gets bigger at 1200 bytes. Then, the

gradient of the graph of upstream end-to-end delay becomes smaller at 1300 bytes

causing the upstream throughput at 1300 bytes to increase. Then, the throughput

decreases at 1400 bytes and 1445 bytes due to the sudden increase of upstream end-

to-end delay at 1400 bytes in and it continues to increase until 1445 bytes.

Figure 4.22 Fi-WiFi downstream throughput

Figure 4.23 shows the downstream and upstream end-to-end delay for Fi-WiFi

network. Based on Figure 4.23, the end-to-end delay increases as the data size

increases from 0.609 s at 100 bytes to 1.032 s at 1445 bytes. Whereas upstream the

 -

 5.0

 10.0

 15.0

 20.0

 25.0

 30.0

 35.0

T
h
ro

u
g
h
p

u
t

(k
b

p
s)

Transmitted data (bytes)

Downstream

Upstream

98

end-to-end delay increases as the data size increases from 0.505 s at 100 bytes to 0.948

s at 1445 bytes. The end-to-end delay for this setup is higher than the other setup, such

as FiWi and wireless. This is because the data has to undergo multiple routers and

medium conversions from fiber to wireless and then wireless to fiber. For downstream

transmission, there is a sudden increase in end-to-end delay at 1400 bytes. This is due

to the proposed router is already approaching its limit. Hence, the data processing time

takes longer at this point.

Figure 4.23 Fi-WiFi end-to-end delay

4.6.2 Wireless-Fiber-Wireless Performance Test

Figure 4.24 shows the downstream and upstream throughput respectively in Wi-FiWi

network. The trend of the downstream throughput increases as the transmitted data

size increases from 2.833 kbps at 100 bytes to 38.09 kbps at 1445 bytes. While, the

upstream throughput increases as the transmitted data increases from 2.81 kbps at 100

bytes to 38.348 kbps at 1445 bytes.

At 100 bytes, the throughput for upstream transmission is lower than downstream

transmission. However, as the transmitted data increases, the throughput for upstream

transmission is higher than downstream transmission. For example, at 1100 bytes, the

throughput for upstream transmission is 29.754 kbps, while the throughput for

downstream transmission is 29.941 kbps. However, starting 1200 bytes, the throughput

for upstream transmission is 32.276 kbps, while the throughput for downstream

0.0

0.2

0.4

0.6

0.8

1.0

1.2

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1445

E
n
d

-t
o

-e
n
d

 d
el

ay
 (

s)

Transmitted data (bytes)

Downstream

Upstream

99

transmission is 32.087 kbps. At 1445 bytes, the performance for both downstream and

upstream transmissions are slightly decreased based on the slope of the graph at this

point. This is due to the proposed router has reached its limit. Despite some differences

in throughput values, the throughput for downstream and upstream do not have much

difference proving that the proposed router in Wi-FiWi is stable for both

transmissions. Therefore, it can be concluded that this proposed router is suitable to

be a scalable testbed.

Figure 4.24 Wi-FiWi throughput

Figure 4.25 shows the end-to-end delay of downstream and upstream transmissions

respectively for Wi-FiWi network. The trend of the downstream end-to-end delay

increases as the transmitted data size increases from 0.565 s at 100 bytes to 0.607 s at

1445 bytes. In Figure 4.25, there is a sudden increase to the downstream end-to-end

delay at 1200 bytes. This is due to the proposed router is already approaching its limit.

Hence, the data processing time takes longer at this point. Meanwhile, the trend of the

uupstream end-to-end delay increases as the transmitted data increases from 0.569 s

at 100 bytes to 0.603 s at 1445 bytes. The downstream and upstream end-to-end delay

for Wi-FiWi network is also higher than wireless, fiber and FiWi network because

there are more medium changes in between clients. Therefore, the process of medium

conversion contributes to higher end-to-end delay.

0

5

10

15

20

25

30

35

40

45

T
h
ro

u
g
h
p

u
t

(k
b

p
s)

Transmitted data (bytes)

Downstream

Upstream

100

Figure 4.25 Wi-FiWi end-to-end delay

4.6.3 Fi-WiFi and Wi-FiWi performance comparison

Figure 4.26 and Figure 4.27 show the comparisons in terms of throughput between Fi-

WiFi and Wi-FiWi for downstream and upstream transmissions from 100 bytes to

1445 bytes. Both graphs show that the performance for Wi-FiWi is more stable than

Fi-WiFi based on the behaviour of the graphs. This is because Fi-WiFi has more

conversion from electrical pulses to light pulses and vice versa compared to Wi-FiWi

causing instability in Fi-WiFi. Therefore, we can conclude that, the overall

performance in Wi-FiWi is more stable because it has better observable graphs

compared to Fi-WiFi.

Figure 4.26 Fi-WiFi vs Wi-FiWi downstream throughput

 -

 5.0

 10.0

 15.0

 20.0

 25.0

 30.0

 35.0

 40.0

T
h
ro

u
g
h
p

u
t

(k
b

p
s)

Transmitted data (bytes)

Fi-WiFi

Wi-FiWi

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

E
n
d

-t
o

-e
n
d

 d
el

ay
 (

s)

Transmitted data (bytes)

Downstream

Upstream

101

Figure 4.27 Fi-WiFi and Wi-FiWi upstream throughput

Figure 4.28 and Figure 4.29 show the end-to-end delay comparisons between Fi-WiFi

and Wi-FiWi for downstream and upstream transmissions. Both of them have

increasing end-to-end delay when the transmitted data size increased from 100 bytes

to 1445 bytes. However, Fi-WiFi architecture has higher delay than Wi-FiWi. This is

because in Fi-WiFi, there are more FMCs compared to Wi-FiWi. Hence, the medium

conversions from light pulses to electrical pulses or vice versa in Fi-WiFi is more than

Wi-FiWi. Thus, it contributes more delay. From the graphs, we can conclude that Wi-

FiWi has more stable transmission because throughout the transmissions, the end-to-

end delay do not change much.

Figure 4.28 Fi-WiFi vs Wi-FiWi downstream end-to-end delay

 -

 5.0

 10.0

 15.0

 20.0

 25.0

 30.0

 35.0

 40.0

 45.0

T
h
ro

u
g
h
p

u
t

(k
b

p
s)

Transmitted data (bytes)

Fi-WiFi

Wi-FiWi

0

0.2

0.4

0.6

0.8

1

1.2

E
n
d

-t
o

-e
n
d

 d
el

ay
 (

s)

Transmitted data (bytes)

Fi-WiFi

Wi-FiWi

102

Figure 4.29 Fi-WiFi vs Wi-FiWi upstream end-to-end delay

4.7 Summary

In this chapter, the testbed’s performance using wireless, fiber, and FiWi are

presented. FiWi stress test and scalability test are also presented to prove that the

proposed FiWi testbed is functioning as expected. The results in terms of throughput

for wireless transmission, fiber transmission and FiWi transmission are validated with

off-the-shelf router and industrial grade router to prove its the correctness. The end-

to-end delay and throughput in wireless, fiber and FiWi transmission increase as the

data size increases. The end-to-end delay of the proposed router is acceptable because

its behaviour satisfying the behaviour of end-to-end delay of IEEE 802.15.4 routing

scheme. However, as the proposed router approaches its limit, the throughput is

maintained. The jitter varies within acceptable range which is 30 ms for downstream

and upstream as the data is transmitted. Hence, the proposed router is suitable to be a

simple, reconfigurable, low cost and fast implementation testbed. A stress test is

conducted for FiWi transmission. The results show that the end-to-end delay for two

traffics is twice as high as single traffic due to the proposed router needs to process

the data twice. Hence, causing the throughput for two traffics is halved of the

throughput of single traffics. The jitter of two traffics is also higher than a single

traffic. However, the jitter is still within the acceptable range. Hence, making the

proposed router suitable to be a scalable router. For scalability performance test, the

results for Fi-WiFi and Wi-FiWi are presented in terms of end-to-end delay and

throughput. The results show that the end-to-end delay in Fi-WiFi is higher than Wi-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
n
d

-t
o

-e
n
d

 d
el

ay
 (

s)

Transmitted data (bytes)

Fi-WiFi

Wi-FiWi

103

FiWi due to more electrical pulses to light pulses conversion and vice versa from FMC

in Fi-WiFi. Furthermore, Wi-FiWi is more stable compared to Fi-WiFi. With that,

after the results are validated, it is proven that the proposed testbed is suitable to be a

simple, reconfigurable, low cost, and fast implementation wireless, fiber and FiWi

router. It is also suitable to be implemented in various setups proving that the testbed

is scalable. The next chapter will discuss on future works and conclusion.

104

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

FiWi is seen to be one of the best technologies for future global data communication

network architecture due to the advantages of providing robustness and mobility to the

consumers by deploying fiber and wireless in one network. Therefore, consumers can

have better Internet connection and services. Hence, FiWi network is able to provide

a promising solution for future networking technologies. From the literature, it can be

concluded that there are still ongoing research in order to enhance FiWi current

technology either only a part of FiWi such as fiber and wireless or the whole

architecture. Due to that reasons, researchers are motivated to conduct intensive

experiments by developing lab-scale testbed and industrial-scale testbed. The focus of

this thesis is on lab-scale environment router testbed in FiWi architecture because to

provide a proof-of-concept solution on reconfigurable router testbed in FiWi network.

Three types of router testbeds exist; software-based router, commercial routers and

embedded system-based routers. Embedded system-based router is the most

appropriate choice for this thesis due to the open source kernel, reconfigurability,

scalability, space-friendly and cost efficient.

Raspberry Pi is chosen to be the embedded system hardware in this project in order to

develop a scalable and reconfigurable FiWi routers. It also has a module called socket

which makes this project feasible. The module enables the user to program Raspberry

Pi to communicate with each other by using IP addresses. The architecture of the

testbed is in tree topology because it is the typical architecture in FiWi. The setup

comprises of four Raspberry Pi routers; one acts as source router and the other three

as destinations. Each router comprises of four Raspberry Pis; one Header Pi and three

Forwarding Pi, which are connected via two Ethernet switches to represent the internal

connection of the router and external connection to other routers. Whereas for wireless

router, an additional AP is used as the antennae of the router. The role Header Pi in

the router is to check the destination decided by the sender and insert a label onto the

105

data that represents the destination. Then, the labelled data is forwarded to Forwarding

Pi so that the data can be forwarded to the destination. Header Pi also checks the

incoming data whether the data belongs to the correct router or not by comparing the

labels on the data with its self-label. Since there are no specific port for fiber on the

Raspberry Pi, FMCs are used to interconnect one router with the other via fiber patch

cord. After the FiWi setup is complete, the performance test of the testbed for wireless

transmission, fiber transmission and FiWi transmission are tested in terms of

throughput, end-to-end delay and jitter for upstream and downstream transmissions.

By using the same design and performance parameters, the stress test is also conducted

on the testbed by sending two traffics simultaneously. Then, the architecture of the

testbed is reconfigured to Fi-WiFi and Wi-FiWi to test the router’s scalability. The

program of each router also needs to be reconfigured in terms of labels so that it works

as intended. The performance of Fi-WiFi and Wi-FiWi are tested in terms of end-to-

end delay and throughput.

In wireless transmission, the throughput of the proposed router is scaled up with the

throughput of the off-the-shelf router. Whereas in fiber and FiWi transmissions, the

throughput of the proposed router is scaled up with the throughput of industrial grade

routers. This scaling method is done to check the proposed router functionality and to

observe its correctness. The results show that, after the scaling method, the throughput

of the proposed router has similar increasing trend with throughput of the off-the shelf

router and industrial grade router, where, as the offered load increases, the throughput

increases. This proves that the proposed router behaves correctly as intended. For end-

to-end delay, the behaviour of the results for all transmissions are verified with IEEE

802.15.4 routing scheme, where, as the data size increases, the end-to-end delay

increases. This behaviour is due to the proposed router requires more processing time

as the data size increases. As for the jitter, the results for each transmission is verified

with Cisco, where, the jitter values for proposed routers are below 30 ms, which is still

within the acceptable range. In FiWi network, the proposed router is able to achieve

maximum jitter of 8.25 ms for downstream and 0.11 ms for upstream. Hence, the

proposed router is suitable to be wireless, fiber and FiWi router.

106

In stress test, the end-to-end delay of the proposed router is increasing as the data size

increases. However, the proposed router shows that it requires the double amount of

end-to-end delay compared to a single traffic. As for the throughput, it shows that the

throughput is halved compared to a single traffic. This is due to the proposed router

requires to process the data twice compared to a single traffic. Meanwhile, the jitter

shows that two traffics have higher values compared to a single traffic. However,

despite having higher jitter, it is still within the acceptable range which is below 30 ms

which is 11.22 ms for downstream and 0.21 ms for upstream. Hence, this process that

the proposed router is scalable.

In Fi-WiFi and Wi-FiWi architectures, the performance of the proposed router is tested

in order to check its scalability and stability. The results show that the end-to-end delay

for both architectures are increasing as the data size increases. However, at a certain

point, the values become unstable. This is due to the proposed router is reaching its

limit as the data size increases. The throughput of the proposed router in these

architectures show an increasing trend as the data size increases. However, at a certain

point, the throughput decreases because the proposed router has reached the limit. The

end-to-end delay results for these two architectures are compared in order to check

which architecture has more stability. The results show that Wi-FiWi has more

stability compared to Fi-WiFi because it has lesser optical to electrical conversions

and vice versa. This can be proven by observing the consistent trend of the end-to-end

delay in Wi-FiWi. Hence, this proves that the proposed router is not only scalable, but

also flexible and stable. The summary of performance for FiWi, Fi-WiFi and Wi-FiWi

are tabulated in Table 5.1.

107

Table 5.1 Results summary

Topology Parameters

Throughput End-to-end delay Maximum jitter

(< 30 ms)

Wireless - 677 kbps at 100%

offered load

(downstream)

- 752 kbps at 100%

offered load

(upstream)

- 0.19 s at 1445

bytes (downstream)

- 0.19 s at 1445

bytes (upstream)

- 9.8 ms

(downstream)

- 6.3 ms (upstream)

Fiber - 767 Mbps at 100%

offered load

(downstream)

- 785 Mbps at 100%

offered load

(upstream)

- 0.126 s at 1445

bytes (downstream)

- 0.123 s at 1445

bytes (upstream)

- 0.38 ms

(downstream)

- 0.49 ms (upstream)

FiWi - 719 kbps at 100%

offered load

(downstream)

- 770 kbps

(upstream) at 100%

offered load

- 0.144 s at 1445

bytes (downstream)

- 0.124 s at 1445

bytes (upstream)

- 8.25 ms

(downstream)

- 0.11 ms (upstream)

FiWi stress test - 39.45 kbps at 1445

bytes (downstream)

- 46.50 kbps at 1445

bytes (upstream)

- 0.29 s at 1445

bytes (downstream)

- 0.25 s at 1445

bytes (upstream)

- 11.22 ms

(downstream)

- 0.21 ms (upstream)

Fi-WiFi - 22.403 kbps at

1445 bytes

(downstream)

- 24.4 kbps at 1445

bytes (upstream)

- 1.03 s at 1445

bytes (downstream)

- 0.948 s at 1445

bytes (upstream)

-

Wi-FiWi - 38.09 kbps at 1445

bytes (downstream)

- 38.35 kbps at 1445

bytes (upstream)

- 0.61 s at 1445

bytes (downstream)

- 0.60 s at 1445

bytes (upstream)

-

Overall, a working reprogrammable, fast reconfigurable and scalable educational

FiWi router testbed has been developed by using Raspberry Pi in a lab-scale

environment. In wireless, fiber and FiWi architecture, the proposed router is proven to

work correctly for downstream and upstream based on the scaling method. Its end-to-

end delay is acceptable because the increasing trend is satisfying the IEEE 802.15.4

routing scheme. The jitter of the proposed router is also acceptable because the values

are within an acceptable range produced by Cisco which is below 30 ms. In conclusion,

it is proven that Raspberry Pi can be used to build a reconfigurable, flexible, and

scalable educational FiWi router testbed. The proposed router also shows a promising

stability in order to test various architectures.

108

5.2 Future Work and Recommendations

The development of the FiWi testbed using Raspberry Pi has been deliberated in this

thesis. The future works are as follows:

• The overall throughput of the proposed testbed is small. There are better

programmable embedded system hardware that can provide greater

performance such as Raspberry Pi 4 which has just been released in June 2019.

It is better than Raspberry Pi used in this project has Raspberry Pi 4 as it has

better processor, RAM, and Ethernet capacity. In terms of processor, it uses

Broadcom BCM2711 which is more powerful because it can process input and

output data faster. Hence, more data can be processed at the same time which

makes future proposed testbed to be more scalable than the current one. The

processor also has metal cover which provides better heat dissipation.

According to one of its website, Raspberry Pi 4 also has True Gigabit Ethernet,

which means, the throughput produced is close to 1 Gbps [105]. In terms of

RAM, Raspberry Pi 4 has maximum RAM capacity up to 4 GB which is four

times bigger than current Raspberry Pi in proposed testbed. This makes the

proposed testbed in the future to be able to handle more data at once.

• Current proposed router is using a low-cost AP to provide a reconfigurable

FiWi testbed in a lab-scale environment. Hence, it is more than sufficient to

use current AP as a proof-of-concept first. Then, as for future work, a better

AP that supports dual-band with greater bandwidth and wider coverage such

as TP-LINK WR1043ND can be used, so that more data can be transmitted

simultaneously through wireless transmission and it is more stable than current

AP in the proposed router. Hence, future proposed testbed can be implemented

in wider scale area to get better results.

• Current proposed testbed has no protection for data transmission as it is only

for proof-of-concept. Hence, for future work, physical link redundancy can be

installed on the testbed to provide a better protection for data transmissions in

case of broken link.

109

REFERENCES

[1] Y. Yu, C. Ranaweera, C. Lim, L. Guo, Y. Liu, A. Nirmalathas, et al. (2017,

June). Hybrid Fiber-Wireless Network: An Optimization Framework For

Survivable Deployment. Journal of Optical Communications and Networking.

9(6), pp. 466-478.

[2] B. P. Rimal, M. Maier, and M. Satyanarayanan. (2018, Aug.). Experimental

Testbed for Edge Computing in Fiber-Wireless Broadband Access Networks.

IEEE Communications Magazine. 56(8), pp. 160-167.

[3] V. Mishra, R. Upadhyay, and U. R. Bhatt, "A Review of Recent Energy-

Efficient Mechanisms for Fiber-Wireless (FiWi) Access Network" in Progress

in Advanced Computing and Intelligent Engineering, Springer, 2018, pp. 539-

545.

[4] J. Liu, H. Guo, H. Nishiyama, H. Ujikawa, K. Suzuki, and N. Kato. (2015,

Nov.). New Perspectives on Future Smart FiWi Networks: Scalability,

Reliability, and Energy Efficiency. IEEE Communications Surveys &

Tutorials. 18(2), pp. 1045-1072.

[5] Y. Liu, L. Guo, B. Gong, R. Ma, X. Gong, L. Zhang, et al. (2012, Mar.). Green

Survivability in Fiber-Wireless (FiWi) Broadband Access Network. Optical

Fiber Technology. 18(2), pp. 68-80.

[6] Q. Dai, G. Shou, Y. Hu, and Z. Guo, "A General Model for Hybrid Fiber-

Wireless (FiWi) Access Network Virtualization," in 2013 IEEE International

Conference on Communications Workshops (ICC), Hungary, 2013, pp. 858-

862.

[7] H. Guo and J. Liu. (2018, Jan.). Collaborative Computation Offloading for

Multi-Access Edge Computing Over Fiber–Wireless Networks. IEEE

Transactions on Vehicular Technology. 67(5), pp. 4514-4526.

[8] Z. Zhang, J. Kong, C. Huang, Q. Wu, J. Wu, and J. Li, "Virtual Network

Embedding Algorithm Considering Resource Fragmentation in Virtualized

Industrial Fiber-Wireless (FiWi) Access Network," in Proceedings of the

International Conference on Imaging, Signal Processing and Communication,

Malaysia, 2017, pp. 148-152.

110

[9] H. Beyranvand, W. Lim, M. Maier, C. Verikoukis, and J. A. Salehi. (2015,

Feb.). Backhaul-Aware User Association in FiWi Enhanced LTE-A

Heterogeneous Networks. IEEE Transactions on Wireless Communications.

14(6), pp. 2992-3003.

[10] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb. (2018,

June). Survey On Multi-Access Edge Computing For Internet of Things

Realization. IEEE Communications Surveys & Tutorials. 20(4), pp. 2961-

2991.

[11] W. Sun, J. Liu, and H. Zhang. (2017, June). When Smart Wearables Meet

Intelligent Vehicles: Challenges and Future Directions. IEEE Wireless

Communications. 24(3), pp. 58-65.

[12] B. P. Rimal, D. P. Van, and M. Maier. (2017, May). Mobile-Edge Computing

Versus Centralized Cloud Computing Over A Converged FiWi Access

Network. IEEE Transactions on Network and Service Management. 14(3), pp.

498-513.

[13] P.-Y. Chen and M. Reisslein. (2018, Apr.). FiWi Network Throughput-Delay

Modeling with Traffic Intensity Control and Local Bandwidth Allocation.

Optical Switching and Networking. 28(pp. 8-22.

[14] B. P. Rimal, D. P. Van, and M. Maier. (2017, Feb.). Mobile Edge Computing

Empowered Fiber-Wireless Access Networks in The 5G Era. IEEE

Communications Magazine. 55(2), pp. 192-200.

[15] H.-H. Lu, C.-Y. Li, T.-C. Lu, C.-J. Wu, C.-A. Chu, A. Shiva, et al. (2016,

Feb.). Bidirectional Fiber-Wireless and Fiber-VLLC Transmission System

Based On An OEO-Based BLS and A RSOA. Optics Letters. 41(3), pp. 476-

479.

[16] M. Tornatore, G.-K. Chang, and G. Ellinas, Fiber-Wireless Convergence in

Next-Generation Communication Networks. Davis, USA, Springer, 2017, pp.

3-395.

[17] J. Liu, H. Guo, Z. M. Fadlullah, and N. Kato. (2016, Nov.). Energy

Consumption Minimization for FiWi Enhanced LTE-A HetNets with UE

Connection Constraint. IEEE Communications Magazine. 54(11), pp. 56-62.

[18] N. Choosri, Y. Park, S. Grudpan, P. Chuarjedton, and A. Ongvisesphaiboon.

(2015, Mar.). IoT-RFID Testbed for Supporting Traffic Light Control.

111

International Journal of Information and Electronics Engineering. 5(2), pp.

102-106.

[19] W. Hurst, N. Shone, A. El Rhalibi, A. Happe, B. Kotze, and B. Duncan,

"Advancing The Micro-CI Testbed for IoT Cyber-Security Research and

Education," in The Eighth International Conference on Cloud Computing,

GRIDs, and Virtualization, Greece, 2017, pp. 129-134.

[20] Z. Gong, W. Xue, Z. Liu, Y. Zhao, R. Miao, R. Ying, et al., "Design of a

Reconfigurable Multi-Sensor Testbed for Autonomous Vehicles and Ground

Robots," in 2019 IEEE International Symposium on Circuits and Systems

(ISCAS), Japan, 2019, pp. 1-5.

[21] M. Ridwan, N. A. M. Radzi, F. Abdullah, N. M. Din, and C. Rashidi. (2018,

Sep.). Feasibility Study of a Reconfigurable Fiber-Wireless Testbed Using

Universal Software Radio Peripheral. International Journal of Engineering and

Technology Innovation. 8(4), pp. 274-283.

[22] S. T. Abraha, D. F. Castellana, X. Liang, A. Ng'oma, and A. Kobyakov,

"Experimental Study of Distributed Massive MIMO (DM-MIMO) in In-

building Fiber-Wireless Networks," in 2018 Optical Fiber Communications

Conference and Exposition (OFC), USA, 2018, pp. 1-3.

[23] M. Maier and N. Ghazisaidi, FiWi Access Networks. Cambridge university

press, 2011, pp. 1-236.

[24] N. Ghazisaidi and M. Maier. (2011, Jan.). Fiber-wireless (FiWi) Access

Networks: Challenges and Opportunities. IEEE network. 25(1), pp. 36-42.

[25] P. Singh and S. Prakash. (2017, Jul.). Optical Network Unit Placement In

Fiber-Wireless (FiWi) Access Network by Moth-Flame Optimization

Algorithm. Optical Fiber Technology. 36(pp. 403-411.

[26] B. Kantarci, N. Naas, and H. T. Mouftah, "Energy-Efficient DBA and QoS in

FiWi Networks Constrained To Metro-Access Convergence," in 2012 14th

International Conference on Transparent Optical Networks (ICTON), UK,

2012, pp. 1-4.

[27] M. Lévesque, M. Maier, F. Aurzada, and M. Reisslein, "Analytical Framework

for The Capacity and Delay Evaluation of Next-Generation FiWi Network

Routing Algorithms," in 2013 IEEE Wireless Communications and

Networking Conference (WCNC), China, 2013, pp. 1926-1931.

112

[28] S. Bindhaiq, A. S. M. Supa, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M.

A. Elmagzoub, et al. (2015, Aug.). Recent Development On Time And

Wavelength-Division Multiplexed Passive Optical Network (TWDM-PON)

For Next-Generation Passive Optical Network Stage 2 (NG-PON2). Optical

Switching and Networking. 15(pp. 53-66.

[29] S. S. Ahmed and M. M. Islam. (2018, Dec.). A Technical Review on Optical

Access Networks. Nonlinear Dynamics. 6(2), pp. 79-95.

[30] D. Nesset. (2015, Dec.). NG-PON2 Technology and Standards. Journal of

Lightwave Technology. 33(5), pp. 1136-1143.

[31] Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, et al. (2012, Feb.).

Time and Wavelength-Division Multiplexed Passive Optical Network

(TWDM-PON) for Next-Generation PON Stage 2 (NG-PON2). Journal of

Lightwave Technology. 31(4), pp. 587-593.

[32] J. S. Wey, D. Nesset, M. Valvo, K. Grobe, H. Roberts, Y. Luo, et al. (2016,

Jan.). Physical Layer Aspects of NG-PON2 Standards—Part 1: Optical Link

Design. IEEE/OSA Journal of Optical Communications and Networking. 8(1),

pp. 33-42.

[33] D. Iida, S. Kuwano, J.-i. Kani, and J. Terada. (2013, Oct.). Dynamic TWDM-

PON for Mobile Radio Access Networks. Optics Express. 21(22), pp. 1-10.

[34] S. Rajpal and R. Goyal. (2017, June). A Review On Radio-over-Fiber

Technology-based Integrated (Optical/Wireless) Networks. Journal of Optical

Communications. 38(1), pp. 19-25.

[35] D. P. Van, B. P. Rimal, M. Maier, and L. Valcarenghi. (2016, Feb.). ECO-

FiWi: An Energy Conservation Scheme for Integrated Fiber-Wireless Access

Networks. IEEE Transactions on Wireless Communications. 15(6), pp. 3979-

3994.

[36] K. Ahmavaara, H. Haverinen, and R. Pichna. (2003, Nov.). Interworking

Architecture Between 3GPP and WLAN Systems. IEEE Communications

Magazine. 41(11), pp. 74-81.

[37] M. Youssef and A. Agrawala, "The Horus WLAN Location Determination

System," in The 3rd International Conference on Mobile Systems,

Applications, and Services, Washington, 2005, pp. 205-218.

113

[38] Y. Mekonnen, M. Haque, I. Parvez, A. Moghadasi, and A. Sarwat, "LTE and

Wi-Fi Coexistence in Unlicensed Spectrum with Application to Smart Grid: A

Review," in 2018 IEEE/PES Transmission and Distribution Conference and

Exposition (T&D), USA, 2018, pp. 1-5.

[39] S. Radhakrishnan, S. Neduncheliyan, and K. K. Thyagharajan. (2016, Jan.). A

Review of Downlink Packet Scheduling Algorithms for Real Time Traffic in

LTE-Advanced Networks. Indian Journal of Science and technology. 9(4), pp.

1-5.

[40] M. A. Gadam, M. A. Ahmed, C. K. Ng, N. K. Nordin, A. Sali, and F. Hashim.

(2016, Mar.). Review of Adaptive Cell Selection Techniques in LTE-

Advanced Heterogeneous Networks. Journal of Computer Networks and

Communications. 2016(3), pp. 1-12.

[41] S. Sakamoto, R. Obukata, T. Oda, L. Barolli, M. Ikeda, and A. Barolli. (2017,

Nov.). Performance Analysis of Two Wireless Mesh Network Architectures

by WMN-SA and WMN-TS Simulation Systems. Journal of High Speed

Networks. 23(4), pp. 311-322.

[42] Y. Liu, K.-F. Tong, X. Qiu, Y. Liu, and X. Ding, "Wireless Mesh Networks in

IoT Networks," in 2017 International Workshop on Electromagnetics:

Applications and Student Innovation Competition, UK, 2017, pp. 183-185.

[43] B. Singh and D. Singh. (2016, June). A Review on Advantages and

Applications of Radio over Fiber System. International Journal of Current

Engineering and Technology. 6(3), pp. 1042-1044.

[44] S. R. A. Sharma and S. Rana. (2017, Jul.). Comprehensive Study of Radio

Over Fiber With Different Modulation Techniques–A Review. International

Journal of Computer Applications. 170(4), pp. 22-25.

[45] D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R.

Clark, et al. (2015, Nov.). Radio-over-Fiber Technologies for Emerging

Wireless Systems. IEEE Journal of Quantum Electronics. 52(1), pp. 1-11.

[46] C. Lim, Y. Tian, C. Ranaweera, T. A. Nirmalathas, E. Wong, and K.-L. Lee.

(2018, Oct.). Evolution of Radio-Over-Fiber Technology. Journal of

Lightwave Technology. 37(6), pp. 1647-1656.

[47] U. R. Bhatt, A. Chhabra, and R. Upadhyay, "Fiber-Wireless (Fi-Wi)

Architectural Technologies: A Survey," in 2016 International Conference on

114

Electrical, Electronics, and Optimization Techniques (ICEEOT), India, 2016,

pp. 519-524.

[48] G. Kalfas, N. Pleros, L. Alonso, and C. Verikoukis. (2016, Apr.). Network

Planning for 802.11ad and MT-MAC 60 GHz Fiber-Wireless Gigabit Wireless

Local Area Networks Over Passive Optical Networks. Journal of Optical

Communications and Networking. 8(4), pp. 206-220.

[49] D. P. Van, B. P. Rimal, J. Chen, P. Monti, L. Wosinska, and M. Maier. (2016,

Nov.). Power-Saving Methods for Internet of Things over Converged Fiber-

Wireless Access Networks. IEEE Communications Magazine. 54(11), pp.

166-175.

[50] T. H. Szymanski and M. Rezaee, "An FPGA Controller for Deterministic

Guaranteed-Rate Optical Packet Switching," in 2015 IFIP/IEEE International

Symposium on Integrated Network Management (IM), Canada, 2015, pp.

1177-1183.

[51] H. Yang, J. Zhang, Y. Zhao, J. Wu, Y. Ji, Y. Lin, et al. (2016, Aug.).

Experimental Demonstration of Remote Unified Control for OpenFlow-Based

Software-Defined Optical Access Networks. Photonic Network

Communications. 31(3), pp. 568-577.

[52] H. Yang, J. Zhang, Y. Zhao, J. Han, Y. Lin, and Y. Lee. (2016, Feb.). SUDOI:

Software Defined Networking for Ubiquitous Data Center Optical

Interconnection. IEEE Communications Magazine. 54(2), pp. 86-95.

[53] S. Okamoto, T. Sato, and N. Yamanaka, "Logical Optical Line Terminal

Technologies Towards Flexible And Highly Reliable Metro And Access-

Integrated Networks," in Optical Metro Networks and Short-Haul Systems IX,

United States, 2017, pp. 1-15.

[54] R. S Luis, H. Furukawa, G. Rademacher, B. J Puttnam, and N. Wada,

"Demonstration of an SDM Network Testbed for Joint Spatial Circuit and

Packet Switching," in 2017 European Conference on Optical Communication

(ECOC), Sweden, 2018, pp. 1-3.

[55] J. Azofra, N. Merayo, J. C. Aguado, I. De Miguel, R. Durán, F. Ruíz, et al.,

"Implementation of A Testbed to Analysis A SDN Based GPON," in 2018

European Conference on Optical Communication (ECOC), Italy, 2018, pp. 1-

3.

115

[56] M. S. Singh and V. Talasila, "A Practical Evaluation for Routing Performance

of BATMAN-ADV And HWMN in A Wireless Mesh Network Testbed," in

2015 International Conference on Smart Sensors and Systems (IC-SSS), India,

2015, pp. 1-6.

[57] A. R. Prusty, S. Sethi, and A. K. Nayak, "Testbed for Link Quality Assessment

in Wireless Ad-hoc Sensor Network," in 2016 International Conference on

Computing, Analytics and Security Trends (CAST), India, 2016, pp. 329-334.

[58] A. Barolli, T. Oda, L. Barolli, and M. Takizawa, "Experimental Results of A

Raspberry Pi and OLSR-Based Wireless Content Centric Network Testbed

Considering OpenWRT OS," in 2016 IEEE 30th International Conference on

Advanced Information Networking and Applications (AINA), Switzerland,

2016, pp. 95-100.

[59] P. Zhang, O. Landsiedel, and O. Theel, "MOR: Multichannel Opportunistic

Routing for Wireless Sensor Networks," in Proceedings of the 2017

International Conference on Embedded Wireless Systems and Networks,

Sweden, 2017, pp. 36-47.

[60] E. Jecan, C. Pop, Z. Padrah, O. Ratiu, and E. Puschita, "A Dual-Standard

Solution for Industrial Wireless Sensor Network Deployment: Experimental

Testbed and Performance Evaluation," in 2018 14th IEEE International

Workshop on Factory Communication Systems (WFCS), Italy, 2018, pp. 1-9.

[61] F. Pakzad, M. Portmann, T. Turletti, T. Parmentelat, M. N. Mahfoudi, and W.

Dabbous, "R2Lab Testbed Evaluation for Wireless Mesh Network

Experiments," in 2018 28th International Telecommunication Networks and

Applications Conference, ITNAC 2018, Australia, 2019, pp. 1-6.

[62] K.-K. Nguyen and M. Cheriet. (2016, Dec.). Virtual Edge-Based Smart

Community Network Management. IEEE Internet Computing. 20(6), pp. 32-

41.

[63] M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, et al. (2016, June).

FBMC in Next-Generation Mobile Fronthaul Networks With Centralized Pre-

Equalization. IEEE Photonics Technology Letters. 28(18), pp. 1912-1915.

[64] B. P. Rimal, D. P. Van, and M. Maier. (2017, Mar.). Cloudlet Enhanced Fiber-

Wireless Access Networks for Mobile-Edge Computing. IEEE Transactions

on Wireless Communications. 16(6), pp. 3601-3618.

116

[65] J. Liu, G. Shou, Y. Liu, Y. Hu, and Z. Guo. (2018, May). Performance

Evaluation of Integrated Multi-Access Edge Computing And Fiber-Wireless

Access Networks. IEEE Access. 6(pp. 30269-30279.

[66] Y. Turk and E. Zeydan. (2018, Oct.). An Experimental Measurement Analysis

of Congestion Over Converged Fixed and Mobile Networks. Wireless

Networks. pp. 1-16.

[67] Y. Alfadhli, Y.-W. Chen, S. Liu, S. Shen, S. Yao, D. Guidotti, et al. (2019,

Oct.). Latency Performance Analysis of Low Layers Function Split for

URLLC Applications in 5G Networks. Computer Networks. 162(pp. 1-7.

[68] M. Bahnasy, K. Idoudi, and H. Elbiaze. (2015, Apr.). OpenFlow and GMPLS

Unified Control Planes: Testbed Implementation And Comparative Study.

Journal of Optical Communications and Networking. 7(4), pp. 301-313.

[69] T. M. Runge, D. Raumer, F. Wohlfart, B. E. Wolfinger, and G. Carle. (2015,

Apr.). Towards Low Latency Software Routers. JNW. 10(4), pp. 188-200.

[70] S. Rampfl, "Network Simulation and Its Limitations," in Proceeding zum

Seminar Future Internet (FI), Innovative Internet Technologien und

Mobilkommunikation (IITM) und Autonomous Communication Networks

(ACN), 2013, pp.

[71] R. G. Addie and J. P. R. Natarajan, "Netml-NS3-Click: Modeling of Routers

in Netml/NS3 By Means of The Click Modular Router," in SimuTools, Greece,

2015, pp. 293-295.

[72] P. L. Suresh and R. Merz, "NS-3-Click: Click Modular Router Integration For

NS3," in Proceedings of the 4th International ICST Conference on Simulation

Tools and Techniques, Belgium, 2011, pp. 423-430.

[73] P. Goswami, S. K. Ghosh, and D. Datta. (2015, Feb.). On Methodologies to

Estimate Optical-Layer Power Consumption and Cost For Long-Haul WDM

Networks With Optical Reach Constraint. Photonic Network

Communications. 29(1), pp. 12-31.

[74] K. Ohsugi, J. Takemasa, Y. Koizumi, T. Hasegawa, and I. Psaras. (2016, May).

Power Consumption Model of NDN-based Multicore Software Router Based

on Detailed Protocol Analysis. IEEE Journal on Selected Areas in

Communications. 34(5), pp. 1631-1644.

117

[75] L. Xu, K. Xu, M. Shen, K. Ren, J. Fan, C. Guan, et al., "MINOS: Regulating

Router Dataplane Actions In Dynamic Runtime Environments," in

Proceedings of the ACM Turing 50th Celebration Conference, China, 2017,

pp. 1-10.

[76] M. A. Kourtis, G. Xilouris, V. Riccobene, M. J. McGrath, G. Petralia, H.

Koumaras, et al., "Enhancing VNF Performance By Exploiting SR-IOV And

DPDK Packet Processing Acceleration," in 2015 IEEE Conference on

Network Function Virtualization and Software Defined Network, NFV-SDN

2015, USA, 2016, pp. 74-78.

[77] R. Rajesh, K. B. Ramia, and M. Kulkarni, "Integration of LwIP Stack Over

Intel (R) DPDK for High Throughput Packet Delivery to Applications," in

2014 Fifth International Symposium on Electronic System Design, 2014, pp.

130-134.

[78] M. M. Tajiki, B. Akbari, N. Mokari, and L. Chiaraviglio. (2018, Aug.). SDN-

based Resource Allocation In MPLS Networks: A Hybrid Approach.

Concurrency and Computation Practice and Experience. 31(8), pp. 1-13.

[79] J. I. Kim, N. J. Choi, T. W. You, H. Jung, Y. W. Kwon, and S. J. Koh. (2019,

Mar.). Mobile-oriented Future Internet: Implementation And

Experimentations Over EU–Korea Testbed. Electronics (Switzerland). 8(3),

pp. 1-24.

[80] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. (2000, Aug.).

The Click Modular Router. ACM Transactions on Computer Systems (TOCS).

18(3), pp. 263-297.

[81] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. (1999, Dec.). The Click

Modular Router. ACM SIGOPS Operating Systems Review. 33(5), pp. 217-

231.

[82] S. M. Blair, F. Coffele, C. Booth, B. De Valck, and D. Verhulst. (2014, Aug.).

Demonstration And Analysis of IP/MPLS Communications for Delivering

Power System Protection Solutions Ssing IEEE C37. 94, IEC 61850 Sampled

Values, And IEC 61850 GOOSE Protocols. 2014 CIGRE Session. pp. 1-8.

[83] T. Feng, J. Bi, P. Xiao, and X. Zheng, "Hybrid SDN Architecture To Integrate

With Legacy Control And Management Plane: An Experiences-based Study,"

118

in 2015 IFIP/IEEE International Symposium on Integrated Network

Management (IM), Canada, 2015, pp. 754-757.

[84] A. Sgambelluri, F. Paolucci, A. Giorgetti, F. Cugini, and P. Castoldi. (2016,

Jan.). Experimental Demonstration of Segment Routing. Journal of Lightwave

Technology. 34(1), pp. 205-212.

[85] K. Tantayakul, R. Dhaou, B. Paillassa, and W. Panichpattanakul,

"Experimental Analysis in SDN Open Source Environment," in 2017 14th

International Conference on Electrical Engineering/Electronics, Computer,

Telecommunications and Information Technology (ECTI-CON), Thailand,

2017, pp. 334-337.

[86] Z. Chen, H. Zou, J. Yang, H. Jiang, and L. Xie. (2019, June). WiFi

Fingerprinting Indoor Localization Using Local Feature-Based Deep LSTM.

IEEE Systems Journal. pp. 1-10.

[87] V. Sivaraman, A. Vishwanath, D. Ostry, and M. Thottan. (2016, Aug.).

Greening Router Line-Cards via Dynamic Management of Packet Memory.

IEEE Journal on Selected Areas in Communications. 34(12), pp. 3843-3853.

[88] C. H. Hoo and A. Kumar, "ParaDiMe: A Distributed Memory FPGA Router

Based On Speculative Parallelism and Path Encoding," in 2017 IEEE 25th

Annual International Symposium on Field-Programmable Custom Computing

Machines (FCCM), USA, 2017, pp. 172-179.

[89] C. Concatto, J. A. Pascual, J. Navaridas, J. Lant, A. Attwood, M. Lujan, et al.,

"A CAM-free Exascalable HPC Router For Low-Energy Communications," in

International Conference on Architecture of Computing Systems, Germany,

2018, pp. 99-111.

[90] D. Posch, B. Rainer, S. Theuermann, A. Leibetseder, and H. Hellwagner,

"Emulating NDN-based Multimedia Delivery," in Proceedings of the 7th

International Conference on Multimedia Systems, Austria, 2016, pp. 1-4.

[91] B. Rainer, D. Posch, A. Leibetseder, S. Theuermann, and H. Hellwagner.

(2016, Sep.). A Low-Cost NDN Testbed On Banana Pi Routers. IEEE

Communications Magazine. 54(9), pp. 105-111.

[92] P. Lech and P. Włodarski, "IoT WiFi Home Network Stress Test," in

International Conference on Image Processing and Communications, Poland,

2017, pp. 247-254.

119

[93] S. Y. Jang, B. H. Shin, and D. Lee, "Implementing a Dynamically

Reconfigurable Wireless Mesh Network Testbed for Multi-Faceted QoS

Support," in Proceedings of the 11th International Conference on Future

Internet Technologies, China, 2016, pp. 95-98.

[94] X. Piao, L. Huang, K. Yuan, J. Yuan, and K. Lei, "The Real Implementation

of NDN Forwarding Strategy On Android Smartphone," in 2016 IEEE 7th

Annual Ubiquitous Computing, Electronics & Mobile Communication

Conference (UEMCON), USA, 2016, pp. 1-6.

[95] V. Gupta, K. Kaur, and S. Kaur, "Developing Small Size Low-Cost Software-

Defined Networking Switch Using Raspberry Pi," in 50th Annual Convention

of Computer Society of India : Next-Generation Networks, India, 2018, pp.

147-152.

[96] S. Brown, "An Analysis of Loss-free Data Aggregation for High Data

Reliability in Wireless Sensor Networks," in 2017 28th Irish Signals and

Systems Conference (ISSC), Ireland, 2017, pp. 1-6.

[97] D-Link, Wireless N300 Access Point & Router - DAP 1360 Datasheet at

ftp://ftp.dlink.ru/pub/Wireless/DAP-1360/Data_sh/DAP-

1360_A_E1_DS_v.2.5.4_09.09.14_EN.pdf

[98] A. Minakhmetov, C. Ware, and L. Iannone, "Optical Networks Throughput

Enhancement via TCP Stop-and-Wait on Hybrid Switches," in 2018 Optical

Fiber Communications Conference and Exposition (OFC), San Diego, USA,

2018, pp. 1-3.

[99] E. Leão, C. Montez, R. Moraes, P. Portugal, and F. Vasques. (2017, May).

Alternative Path Communication in Wide-Scale Cluster-Tree Wireless Sensor

Networks Using Inactive Periods. Sensors. 17(5), pp. 1049.

[100] M. Ridwan, "A Re-Programmable Testbed for Fiber Wireless Network Using

NI-Sofware Defined Radio," Master in Electrical Engineering, Universiti

Tenaga Nasional, Malaysia, 2017.

[101] C. Hattingh and T. Szigeti, End-to-End QoS Network Design: Quality of

Service in LANs, WANs, and VPNs. Cisco Press, 2004, pp. 1-768.

[102] L. Kumar, A. Singh, and V. Sharma, "Convergence of Bidirectional PON with

Single-Sink Wireless Sensor Network Using Queue Theory" in Ambient

Communications and Computer Systems, Springer, 2018, pp. 249-259.

ftp://ftp.dlink.ru/pub/Wireless/DAP-1360/Data_sh/DAP-1360_A_E1_DS_v.2.5.4_09.09.14_EN.pdf
ftp://ftp.dlink.ru/pub/Wireless/DAP-1360/Data_sh/DAP-1360_A_E1_DS_v.2.5.4_09.09.14_EN.pdf

120

[103] H. Xu, X.-Y. Li, L. Huang, H. Deng, H. Huang, and H. Wang. (2017, Feb.).

Incremental Deployment and Throughput Maximization Routing for A Hybrid

SDN. IEEE/ACM Transactions on Networking. 25(3), pp. 1861-1875.

[104] Q. T. Minh, T. K. Dang, T. Nam, and T. Kitahara. (2019, May). Flow

Aggregation for SDN-based Delay-insensitive Traffic Control in Mobile Core

Networks. IET Communications. 13(8), pp. 1051-1060.

[105] Cytron. (2019). Raspberry Pi 4 Model B. Available: https://my.cytron.io/p-

raspberry-pi-4-model-b-

4gb?gclid=EAIaIQobChMI4smA_7Lo5AIVkyQrCh3Xvw0dEAQYASABEg

IHI_D_BwE

121

APPENDIX A

PROGRAM FOR CLIENT

import sys,socket,select

def client_pi():

 host = '169.254.249.122'

 port = 9009

 s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

 try:

 s.connect((host,port))

 except:

 print 'Unable to connect'

 sys.exit()

 print 'Connected to the network\n'

 while 1:

 print 'Press: \n1) Router A\n2) Router B\n3) Router C\n'

 x = input('Choose one destination: ')

 if x == 1:

 print 'Your destination is Router A.\n'

 sys.stdout.write('[Me] ');sys.stdout.flush()

 while 1:

 socket_list = [sys.stdin,s]

 read_sockets,write_sockets,error_sockets =

select.select(socket_list,[],[])

 for sock in read_sockets:

 if sock == s:

 data = sock.recv(4096)

 #print (data)

 if not data:

 print 'Disconnected from

network.\n'

 elif data[1:4] == '400':

 msg = data[4:]

122

 sys.stdout.write('Received:

'+msg+'\n');sys.stdout.flush()

 sys.stdout.write('[Me]

');sys.stdout.flush()

 elif data[1:4] == '400':

 msg = data[4:]

 sys.stdout.write('Received: '+msg+'\n');sys.stdout.flush()

 sys.stdout.write('[Me] ');sys.stdout.flush()

 elif data[1:4] == '400':

 msg = data[4:]

 sys.stdout.write('Received: '+msg+'\n');sys.stdout.flush()

 sys.stdout.write('[Me] ');sys.stdout.flush()

 else:

 data = '0\n'

 sys.stdout.flush()

 else:

 sys.stdout.write('[Me] '); sys.stdout.flush()

 msg = sys.stdin.readline()

 s.send(str(100) + msg)

 if x == 2:

 print 'Your destination is Router B.\n'

 print 'Which client do you want to receive the message?\n1) Wired

client only\n2) Wireless client 1 only\n3) Wireless client 2 only\n4) Wireless client 3

only\n5) Broadcast the message\n'

 y = input('Your choice: ')

 if y == 1:

 print 'You wish to send to wired client.\n'

 sys.stdout.write('[Me] ');sys.stdout.flush()

 while 1:

 socket_list = [sys.stdin,s]

 read_sockets,write_sockets,error_sockets =

select.select(socket_list,[],[])

 for sock in read_sockets:

 if sock == s:

 data = sock.recv(4096)

 if not data:

123

 print 'Disconnected from network.\n'

 elif data[1:4] == '400':

 if data[4:6] == '10':

 msg = data[6:]

 sys.stdout.write('Received message for service 1:

'+msg+'\n')

 sys.stdout.write('[Me] ');sys.stdout.flush()

 elif data[4:6] == '20':

 msg = data[6:]

 sys.stdout.write('Received message for service 2:

'+msg+'\n')

 sys.stdout.write('[Me] ');sys.stdout.flush()

 elif data[4:6] == '30':

 msg = data[6:]

 sys.stdout.write('Received message for service 3:

'+msg+'\n')

 sys.stdout.write('[Me] ');sys.stdout.flush()

 else:

 data = '0\n'

 sys.stdout.flush()

 else:

 data = '0\n'

 sys.stdout.flush()

 else:

 sys.stdout.write('[Me] '); sys.stdout.flush()

 msg = sys.stdin.readline()

 print 'Mark your message as:\n1)

Service 1\n2) Service 2\n3) Service 3\n'

 z = input('Your choice: ')

 if z == 1:

 s.send(str(21110) + msg)

 elif z == 2:

 s.send(str(21120) + msg)

 elif z == 3:

 s.send(str(21130) + msg)

124

 elif y == 2:

 print 'You wish to send to wireless client 1.\n'

 sys.stdout.write('[Me] ');sys.stdout.flush()

 while 1:

 socket_list = [sys.stdin,s]

 read_sockets,write_sockets,error_sockets =

select.select(socket_list,[],[])

 for sock in read_sockets:

 if sock == s:

 data = sock.recv(4096)

 if not data:

 print 'Disconnected from network.\n'

 elif data[1:4] == '400':

 if data[4:6] == '10':

 msg = data[6:]

 sys.stdout.write('Received message from service 1:

'+msg+'\n')

 sys.stdout.write('[Me] ');sys.stdout.flush()

 elif data[4:6] == '20':

 msg = data[6:]

 sys.stdout.write('Received message from service 2:

'+msg+'\n')

 sys.stdout.write('[Me] ');sys.stdout.flush()

 elif data[4:6] == '30':

 msg = data[6:]

 sys.stdout.write('Received from service 3:

'+msg+'\n')

 sys.stdout.write('[Me] ');sys.stdout.flush()

 else:

 data = '0\n'

 sys.stdout.flush()

 else:

 data = '0\n'

 sys.stdout.flush()

 else:

125

 sys.stdout.write('[Me] '); sys.stdout.flush()

 msg = sys.stdin.readline()

 print 'Mark your message as:\n1) Service 1\n2) Service

2\n3) Service 3\n'

 z = input('Your choice: ')

 if z == 1:

 s.send(str(22110) + msg)

 elif z == 2:

 s.send(str(22120) + msg)

 elif z == 3:

 s.send(str(22130) + msg)

 elif y == 3:

 print 'You wish to send to wireless client 2.\n'

 sys.stdout.write('[Me] ');sys.stdout.flush()

 while 1:

 socket_list = [sys.stdin,s]

 read_sockets,write_sockets,error_sockets =

select.select(socket_list,[],[])

 for sock in read_sockets:

 if sock == s:

 data = sock.recv(4096)

 if not data:

 print 'Disconnected from network.\n'

 elif data[1:4] == '400':

 if data[4:6] == '10':

 msg = data[6:]

 sys.stdout.write('Received message from service 1:

'+msg+'\n')

 sys.stdout.write('[Me] ');sys.stdout.flush()

 elif data[4:6] == '20':

 msg = data[6:]

 sys.stdout.write('Received message from service 2:

'+msg+'\n')

 sys.stdout.write('[Me] ');sys.stdout.flush()

 elif data[4:6] == '30':

126

 msg = data[6:]

 sys.stdout.write('Received message from service 3:

'+msg+'\n')

 sys.stdout.write('[Me] ');sys.stdout.flush()

 else:

 data = '0\n'

 sys.stdout.flush()

 else:

 data = '0\n'

 sys.stdout.flush()

 else:

 sys.stdout.write('[Me] '); sys.stdout.flush()

 msg = sys.stdin.readline()

 print 'Mark your message as:\n1) Service 1\n2) Service

2\n3) Service 3\n'

 z = input('Your choice: ')

 if z == 1:

 s.send(str(23110) + msg)

 elif z == 2:

 s.send(str(23120) + msg)

 elif z == 3:

 s.send(str(23130) + msg)

 if y == 4:

 print 'You wish to send to wireless client 3.\n'

 sys.stdout.write('[Me] ');sys.stdout.flush()

 while 1:

 socket_list = [sys.stdin,s]

 read_sockets,write_sockets,error_sockets =

select.select(socket_list,[],[])

 for sock in read_sockets:

 if sock == s:

 data = sock.recv(4096)

 if not data:

 print 'Disconnected from network.\n'

127

 elif data[1:4] == '400':

 if data[4:6] == '10':

 msg = data[6:]

 sys.stdout.write('Received from service 1:

'+msg+'\n')

 sys.stdout.write('[Me] ');sys.stdout.flush()

 elif data[4:6] == '20':

 msg = data[6:]

 sys.stdout.write('Received from service 2:

'+msg+'\n')

 sys.stdout.write('[Me] ');sys.stdout.flush()

 elif data[4:6] == '30':

 msg = data[6:]

 sys.stdout.write('Received from service 3:

'+msg+'\n')

 sys.stdout.write('[Me] ');sys.stdout.flush()

 else:

 data = '0\n'

 sys.stdout.flush()

 else:

 data = '0\n'

 sys.stdout.flush()

 else:

 sys.stdout.write('[Me] '); sys.stdout.flush()

 msg = sys.stdin.readline()

 print 'Mark your message as:\n1) Service 1\n2) Service

2\n3) Service 3\n'

 z = input('Your choice: ')

 if z == 1:

 s.send(str(24110) + msg)

 elif z == 2:

 s.send(str(24120) + msg)

 elif z == 3:

 s.send(str(24130) + msg)

128

 elif y == 5:

 print 'You wish to broadcast the message.\n'

 sys.stdout.write('[Me] ');sys.stdout.flush()

 while 1:

 socket_list = [sys.stdin,s]

 read_sockets,write_sockets,error_sockets =

select.select(socket_list,[],[])

 for sock in read_sockets:

 if sock == s:

 data = sock.recv(4096)

 if not data:

 print 'Disconnected from network.\n'

 elif data[1:4] == '400':

 msg = data[4:]

 sys.stdout.write('Received: '+msg+'\n')

 sys.stdout.write('[Me] ');sys.stdout.flush()

 elif data[0:3] == '400':

 msg = data[3:]

 sys.stdout.write('Received: '+msg+'\n')

 sys.stdout.write('[Me] ');sys.stdout.flush()

 elif data[2:5] == '400':

 msg = data[5:]

 sys.stdout.write('Received: '+msg+'\n')

 sys.stdout.write('[Me] ');sys.stdout.flush()

 else:

 data = '0\n'

 sys.stdout.flush()

 else:

 sys.stdout.write('[Me] '); sys.stdout.flush()

 msg = sys.stdin.readline()

 s.send(str(200) + msg)

 if x == 3:

 print 'Your destination is Router C.\n'

 print 'Choose mode:\n1) FiWi\n2) FiWi-Fi\n'

 a = input('Your mode: ')

129

 if a == 1:

 print 'FiWi mode\n'

 sys.stdout.write('[Me] ');sys.stdout.flush()

 while 1:

 socket_list = [sys.stdin,s]

 read_sockets,write_sockets,error_sockets =

select.select(socket_list,[],[])

 for sock in read_sockets:

 if sock == s:

 data = sock.recv(4096)

 if not data:

 print 'Disconnected from network.\n'

 elif data[1:4] == '400':

 msg = data[4:]

 sys.stdout.write('Received: '+msg+'\n')

 sys.stdout.write('[Me] ');sys.stdout.flush()

 elif data[1:4] == '400':

 msg = data[3:]

 sys.stdout.write('Received: '+msg+'\n')

 sys.stdout.write('[Me] ');sys.stdout.flush()

 elif data[2:5] == '400':

 msg = data[5:]

 sys.stdout.write('Received: '+msg+'\n')

 sys.stdout.write('[Me] ');sys.stdout.flush()

 else:

 data = '0\n'

 sys.stdout.flush()

 else:

 sys.stdout.write('[Me] '); sys.stdout.flush()

 msg = sys.stdin.readline()

 s.send(str(300) + msg)

 if a == 2:

 print 'FiWi-Fi mode\n'

 sys.stdout.write('[Me] ');sys.stdout.flush()

 while 1:

130

 socket_list = [sys.stdin,s]

 read_sockets,write_sockets,error_sockets =

select.select(socket_list,[],[])

 for sock in read_sockets:

 if sock == s:

 data = sock.recv(4096)

 if not data:

 print 'Disconnected from network.\n'

 elif data[1:4] == '400':

 msg = data[4:]

 sys.stdout.write('Received: '+msg+'\n')

 sys.stdout.write('[Me] ');sys.stdout.flush()

 elif data[2:4] == '400':

 msg = data[3:]

 sys.stdout.write('Received: '+msg+'\n')

 sys.stdout.write('[Me] ');sys.stdout.flush()

 elif data[2:5] == '400':

 msg = data[5:]

 sys.stdout.write('Received: '+msg+'\n')

 sys.stdout.write('[Me] ');sys.stdout.flush()

 else:

 data = '0\n'

 sys.stdout.flush()

 else:

 sys.stdout.write('[Me] '); sys.stdout.flush()

 msg = sys.stdin.readline()

 s.send(str(320) + msg)

if __name__ == "__main__":

 sys.exit(client_pi())

131

APPENDIX B

PROGRAM FOR HEADER PI

import sys,socket,select

def header_pi():

 host = '169.254.249.122'

 port = 9009

 s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

 try:

 s.connect((host,port))

 except:

 print 'Unable to connect'

 sys.exit()

 print 'Connected to the network\n'

 while 1:

 socket_list = [sys.stdin,s]

 read_sockets,write_sockets,error_sockets = select.select(socket_list,[],[])

 for sock in read_sockets:

 if sock == s:

 data = sock.recv(4096)

 #print (data)

 if not data:

 print 'Disconnected from network.\n'

 elif data[1:4] == '444':

 msg = data[4:]

 sock.send(str(400)+msg)

 elif data[1:4] == '100':

 msg = data[4:]

 sock.send(str(101)+msg)

 elif data[1:4] == '200':

 msg = data[4:]

 sock.send(str(202)+msg)

 elif data[1:4] == ‘300’:

 msg = data[4:]

132

 sock.send(str(303)+msg)

 else:

 data = '0\n'

 sys.stdout.flush()

if __name__ == "__main__":

 sys.exit(header_pi())

133

APPENDIX C

PROGRAM FOR FORWARDING PI

import sys,socket,select

def forwarding_pi():

 host = '169.254.249.122'

 port = 9009

 s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

 try:

 s.connect((host,port))

 except:

 print 'Unable to connect'

 sys.exit()

 print 'Connected to the network\n'

 while 1:

 socket_list = [sys.stdin,s]

 read_sockets,write_sockets,error_sockets = select.select(socket_list,[],[])

 for sock in read_sockets:

 if sock == s:

 data = sock.recv(4096)

 #print (data)

 if not data:

 print 'Disconnected from network.\n'

 elif data[1:4] == '101':

 msg = data[4:]

 sock.send(str(111)+msg)

 else:

 data = ‘0’

 sys.stdout.flush()

if __name__ == "__main__":

 sys.exit(forwarding_pi())

134

APPENDIX D

PROPOSED ROUTER DATASHEET

Key Features

1. Reprogrammable and reconfigurable

2. Scalable to Fi-WiFi and Wi-FiWi

3. Low power consumption

Connectivity

1. Multiple Ethernet connections.

2. Able to communicate wirelessly with other routers and devices.

Performance

1. Provides up to 700 kbps of throughput for FiWi transmissions at 100% load.

2. Jitter for fiber, wireless and FiWi transmissions are less than 30 ms.

Hardware specifications

Total maximum power input 5 V/10 A

RAM 1 GB Low Power Double Data Rate (LPDDR2)

Router dimension (Height x

width x depth)

11 cm x 42 cm x 28 cm

Operating system Raspbian

Ethernet ports 6 ports

Programming Python

Protocols TCP/IP, IPv4

Wireless characteristic 802.11b/g/n

